
www.allitebooks.com

http://www.allitebooks.org

Oracle Essentials
Oracle Database 11g

www.allitebooks.com

http://www.allitebooks.org

Other Oracle resources from O’Reilly

Related titles Mastering Oracle SQL

Optimizing Oracle
Performance

Oracle Application Server 10g
Essentials

Oracle DBA Pocket Guide

Oracle in a Nutshell

Oracle PL/SQL Programming

Oracle SQL*Plus: The Defini-
tive Guide

Oracle Books
Resource Center

oracle.oreilly.com is a complete catalog of O’Reilly’s books on
Oracle and related technologies, including sample chapters and
code examples.

oreillynet.com is the essential portal for developers interested in
open and emerging technologies, including new platforms, pro-
gramming languages, and operating systems.

Conferences O’Reilly brings diverse innovators together to nurture the ideas
that spark revolutionary industries. We specialize in document-
ing the latest tools and systems, translating the innovator’s
knowledge into useful skills for those in the trenches. Visit
conferences.oreilly.com for our upcoming events.

Safari Bookshelf (safari.oreilly.com) is the premier online refer-
ence library for programmers and IT professionals. Conduct
searches across more than 1,000 books. Subscribers can zero in
on answers to time-critical questions in a matter of seconds.
Read the books on your Bookshelf from cover to cover or sim-
ply flip to the page you need. Try it today for free.

www.allitebooks.com

http://www.allitebooks.org

Oracle Essentials
Oracle Database 11g

FOURTH EDITION

Rick Greenwald, Robert Stackowiak, and
Jonathan Stern

Beijing • Cambridge • Farnham • Köln • Paris • Sebastopol • Taipei • Tokyo

www.allitebooks.com

http://www.allitebooks.org

Oracle Essentials: Oracle Database 11g, Fourth Edition
by Rick Greenwald, Robert Stackowiak, and Jonathan Stern

Copyright © 2008 O’Reilly Media, Inc. All rights reserved.
Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O’Reilly books may be purchased for educational, business, or sales promotional use. Online editions
are also available for most titles (safari.oreilly.com). For more information, contact our
corporate/institutional sales department: (800) 998-9938 or corporate@oreilly.com.

Editors: Colleen Gorman and Deborah Russell
Production Editor: Sumita Mukherji
Production Services: Tolman Creek Design

Interior Designer: David Futato
Cover Designer: Karen Montgomery
Illustrator: Robert Romano

Printing History:

October 1999: First Edition. Originally published under the title
Oracle Essentials: Oracle8 and Oracle8i

June 2001: Second Edition. Originally published under the title
Oracle Essentials: Oracle9i, Oracle8i and Oracle8

February 2004: Third Edition. Originally published under the title
Oracle Essentials: Oracle Database 10g

November 2007: Fourth Edition.

Nutshell Handbook, the Nutshell Handbook logo, and the O’Reilly logo are registered trademarks of
O’Reilly Media, Inc. Oracle Essentials: Oracle Database 11g, the image of cicadas, and related trade
dress are trademarks of O’Reilly Media, Inc.

Oracle® and all Oracle-based trademarks and logos are trademarks or registered trademarks of Oracle
Corporation, Inc. in the United States and other countries. O’Reilly Media, Inc. is independent of
Oracle Corporation. Java™ and all Java-based trademarks and logos are trademarks or registered
trademarks of Sun Microsystems, Inc. in the United States and other countries. O’Reilly Media, Inc. is
independent of Sun Microsystems. .NET is a registered trademark of Microsoft Corporation.

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as
trademarks. Where those designations appear in this book, and O’Reilly Media, Inc. was aware of a
trademark claim, the designations have been printed in caps or initial caps.

While every precaution has been taken in the preparation of this book, the publisher and authors
assume no responsibility for errors or omissions, or for damages resulting from the use of the
information contained herein.

This book uses RepKover™, a durable and flexible lay-flat binding.

ISBN-10: 0-596-51454-9

ISBN-13: 978-0-596-51454-9

[M]

www.allitebooks.com

http://safari.oreilly.com
mailto:corporate@oreilly.com
http://www.allitebooks.org

In memory of Jonathan

www.allitebooks.com

http://www.allitebooks.org

www.allitebooks.com

http://www.allitebooks.org

vii

Table of Contents

Preface . xi

1. Introducing Oracle . 1
The Evolution of the Relational Database 2
The Oracle Database Family 7
Summary of Oracle Database Features 9
Database Application Development Features 9
Database Connection Features 13
Distributed Database Features 17
Data Movement Features 18
Database Performance Features 20
Database Management Features 23
Database Security Features 27
Oracle Development Tools 28
Embedded Databases 31

2. Oracle Architecture . 33
Databases and Instances 33
Deploying Physical Components 38
Instance Memory and Processes 48
The Data Dictionary 54

3. Installing and Running Oracle . 56
Installing Oracle 56
Creating a Database 59
Configuring Oracle Net 63

www.allitebooks.com

http://www.allitebooks.org

viii | Table of Contents

Starting Up the Database 68
Shutting Down the Database 69
Accessing a Database 70
Oracle at Work 77

4. Oracle Data Structures . 82
Datatypes 82
Basic Data Structures 90
Additional Data Structures 98
Extended Logic for Data 100
Data Design 102
Constraints 104
Triggers 107
Query Optimization 108
Understanding the Execution Plan 118
SQL Advisors 120
Data Dictionary Tables 120

5. Managing Oracle . 122
Manageability Features 124
Oracle Enterprise Manager 126
Fragmentation and Reorganization 132
Backup and Recovery 133
Working with Oracle Support 137

6. Oracle Security, Auditing, and Compliance . 139
Security 139
Auditing 150
Compliance 151

7. Oracle Performance . 154
Performance Tuning Basics 154
Oracle and Disk I/O Resources 160
Oracle and Parallelism 169
Oracle and Memory Resources 176
Oracle and CPU Resources 182
Database Resource Manager 184

www.allitebooks.com

http://www.allitebooks.org

Table of Contents | ix

8. Oracle Multiuser Concurrency . 186
Basics of Concurrent Access 187
Oracle and Concurrent User Access 190
Oracle’s Isolation Levels 191
Oracle Concurrency Features 192
How Oracle Handles Locking 194
Concurrent Access and Performance 197
Workspaces 198

9. Oracle and Transaction Processing . 201
OLTP Basics 201
Oracle’s OLTP Heritage 205
Architectures for OLTP 206
Oracle Features for OLTP 211
High Availability 217
Oracle Streams and Advanced Queuing 218
Object Technologies and Distributed Components 221

10. Oracle Data Warehousing and Business Intelligence 222
Business Intelligence Basics 223
Data Warehouse Design 227
Query Optimization 230
Analytics, OLAP, and Data Mining in the Database 233
Managing the Data Warehouse 236
Other Software for the Data Warehouse 236
The Metadata Challenge 248
Best Practices 249

11. Oracle and High Availability . 253
What Is High Availability? 254
System Failure 257
Protecting Against System Failure 262
Recovering from Failures 275
Complete Site Failure 281
Data Redundancy Solutions 285
Rolling Upgrades 289

www.allitebooks.com

http://www.allitebooks.org

x | Table of Contents

12. Oracle and Hardware Architecture . 290
System Basics 290
Uniprocessor Systems 292
Symmetric Multiprocessing Systems 293
Clusters 295
Non-Uniform Memory Access Systems 298
Grid Computing 299
Disk and Storage Technology 300
Which Platform Deployment Solution? 302

13. Oracle Distributed Databases and Distributed Data . 305
Accessing Multiple Databases As a Single Entity 305
Moving Data Between Distributed Systems 310

14. Oracle Extended Datatypes . 318
Object-Oriented Development 318
Extensibility Features and Options 324
Using the Extensibility Framework in Oracle 329

15. Beyond the Oracle Database . 331
Application Express 331
Oracle Fusion Middleware 332
Oracle SOA Suite 345

A. What’s New in This Book for Oracle Database 11g . 349

B. Additional Resources . 356

Index . 365

xi

-

Preface1

We dedicate this book to the memory of one of our original coauthors, Jonathan
Stern. Jonathan unexpectedly passed away in March of 2007. Yet his memory lives
on for those of us who knew him and, in many ways, for those who will read this
book. Let us explain.

The original outline for this book was first assembled at the ubiquitous coffee shop
located in the Sears Tower in Chicago. It was 1998 and the authors had gathered
there with a common goal. We were all Oracle employees working in technical sales
roles and had visited many organizations and companies. We found that many IT
managers, Oracle database administrators (DBAs), and Oracle developers were quite
adept at reading Oracle’s documentation, but seemed to be missing an understand-
ing of the overall Oracle footprint and how to practically apply what they were
reading. It was as if they had a recipe book, but were unclear on how to gather the
right ingredients and mix them together successfully. This bothered all of us, but it
particularly frustrated Jonathan.

Jonathan was the kind of person who sought to understand how things worked.
Nothing delighted Jonathan more than gaining such an understanding, then spend-
ing hours thinking of ways to translate his understanding into something that would
be more meaningful to others. He believed that a key role for himself while at Oracle
was the transfer of such knowledge to others. He continued to perform similar roles
later at other companies at which he worked.

Writing the first edition of Oracle Essentials was a lengthy process. Jonathan wrote
several of the original chapters, and he also reviewed some of the other original work
and was quick to identify where he thought something was wrong. For Jonathan,
“wrong” meant that the text could be misinterpreted and that further clarity was
needed to make sure the right conclusion was drawn. The first edition became much
more useful through Jonathan’s efforts. He was always quite proud of that effort.
Even as the book changed with succeeding editions and Jonathan moved on to other
companies, he continued to feel that this book remained an important accomplish-
ment in his life.

xii | Preface

Some explanations of how Oracle works are fundamental to the database and have
not changed in subsequent editions of the book, so some of Jonathan’s original work
remains here, although much of the surrounding text is now considerably different.
Of course, some entire sections describing the complex steps that were once needed
to manage and deploy older releases of the database are no longer relevant and thus
are no longer included. Jonathan would probably view Oracle’s self-managing and
self-tuning improvements as incredible achievements, but would also wonder
whether it is a good thing that people can know even less today about how the data-
base works but still deploy it.

So, we introduce you to the fourth edition of Oracle Essentials. We have made many
changes in this edition. Some, of course, result from changes in features in Oracle
Database 11g and the ways that you can now use and deploy the latest release of the
database. But we have also made a considerable effort to go back and rewrite parts of
the book that we did not believe possessed the clarity needed by our readers—clarity
that Jonathan would want in such a book. So, he influences us still.

Goals of This Book
Our main goal is to give you a foundation for using the Oracle database effectively
and efficiently. Therefore, we wrote with these principles in mind:

Focus
We’ve tried to concentrate on the most important Oracle issues. Every topic pro-
vides a comprehensive but concise discussion of how Oracle handles an issue
and the repercussions of that action.

Brevity
One of the first decisions we made was to concentrate on principles rather than
syntax. There simply isn’t room for myriad syntax diagrams and examples in this
book.

Uniqueness
We’ve tried to make this an ideal first Oracle book for a wide spectrum of Oracle
users—but not the last! You will very likely have to refer to Oracle documenta-
tion or other, more specific books for more details about using Oracle. However,
we hope this book will act as an accelerator for you. Using the foundation you
get from this book, you can take detailed information from other sources and
put it to the best use.

This book is the result of more than 45 combined years of experience with Oracle
and other databases. We hope you’ll benefit from that experience.

Preface | xiii

Audience for This Book
We wrote this book for people possessing all levels of Oracle expertise. Our target
audiences include DBAs who spend most of their workday managing Oracle, appli-
cation developers who build their systems on the data available in an Oracle
database, and system administrators who are concerned with how Oracle will affect
their computing environments. Of course, IT managers and business users interact
more peripherally with the actual Oracle product. On the one hand, anticipating the
appropriate technical level of all our potential readers presented difficulties; on the
other hand, we’ve tried to build a solid foundation from the ground up and believe
that some introductory material benefits everyone. We’ve also tried to ensure that
every reader receives all the fundamental information necessary to truly understand
the topics presented.

If you’re an experienced Oracle user, you may be tempted to skip over material in
this book with which you are already familiar. But experience has shown that some
of the most basic Oracle principles can be overlooked, even by experts. We’ve also
seen how the same small “gotchas” trip up even the most experienced Oracle practi-
tioners and cause immense damage if they go unnoticed. After all, an ounce of
prevention, tempered by understanding, is worth a pound of cure, especially when
you are trying to keep your systems running optimally. So we hope that even experi-
enced Oracle users will find valuable information in every chapter of this book—
information that will save hours in their busy professional lives.

Our guiding principle has been to present this information compactly without mak-
ing it overly tutorial. We think that the most important ratio in a book like this is the
amount of useful information you get balanced against the time it takes you to get it.
We sincerely hope this volume provides a terrific bang for the buck.

About the Fourth Edition (Oracle Database 11g)
The first three editions of this book, covering the Oracle database up to the Oracle
Database 10g version, have been well received, and we were pleased that O’Reilly
Media agreed to publish this fourth edition. In this update to the book, we have
added information describing the latest release of Oracle, Oracle Database 11g.

For the most part, the task of preparing this fourth edition was fairly clear-cut,
because the Oracle Database 11g release is primarily incremental—the new features
in the release extend existing features of the database. We’ve added the information
about these extensions to each of the chapters, wherever this information was most
relevant and appropriate. However, manageability has greatly changed over the
release, and is reflected in many of the most significant changes to content.

xiv | Preface

Of course, this fourth edition cannot possibly cover everything that is new in Oracle
Database 11g. In general, we have followed the same guidelines for this edition that
we did for the first three editions. If a new feature does not seem to be broadly
important, we have not necessarily delved into it. As with earlier editions we have
not tried to produce a laundry list of every characteristic of the Oracle database. In
addition, if a feature falls into an area outside the scope of the earlier editions, we
have not attempted to cover it in this edition unless it has assumed new importance.

Structure of This Book
This book is divided into 15 chapters and 2 appendixes, as follows:

Chapter 1, Introducing Oracle, describes the range of Oracle products and features
and provides a brief history of Oracle and relational databases.

Chapter 2, Oracle Architecture, describes the core concepts and structures (e.g., files,
processes, and so on) that are the architectural basis of Oracle.

Chapter 3, Installing and Running Oracle, briefly describes how to install Oracle and
how to configure, start up, and shut down the database and Oracle Net.

Chapter 4, Oracle Data Structures, summarizes the various datatypes supported by
Oracle and introduces the Oracle objects (e.g., tables, views, indexes). This chapter
also covers query optimization.

Chapter 5, Managing Oracle, provides an overview of managing an Oracle system,
including the advisors available as part of Oracle Database 11g, using Oracle Enter-
prise Manager (EM), dealing with database fragmentation and reorganization using
current database releases, information lifecycle management, and working with Ora-
cle Support.

Chapter 6, Oracle Security, Auditing, and Compliance, provides an overview of basic
Oracle security, Oracle’s security options, basic auditing capabilities, and ways you
can leverage the Oracle Database Vault Option and the Audit Vault Server to meet
compliance needs.

Chapter 7, Oracle Performance, describes the main issues relevant to Oracle perfor-
mance—especially the major performance characteristics of disk, memory, and CPU
tuning. It describes how Oracle Enterprise Manager, the Automatic Workload Repos-
itory, and the Automatic Database Diagnostic Monitor are used for performance
monitoring and management, as well as parallelism and memory management in
Oracle.

Chapter 8, Oracle Multiuser Concurrency, describes the basic principles of multiuser
concurrency (e.g., transactions, locks, integrity problems) and explains how Oracle
handles concurrency.

Preface | xv

Chapter 9, Oracle and Transaction Processing, describes online transaction process-
ing (OLTP) in Oracle.

Chapter 10, Oracle Data Warehousing and Business Intelligence, describes the basic
principles of data warehouses and business intelligence, Oracle database features
used for such solutions, Oracle’s business intelligence tools, relevant options such as
OLAP and Data Mining, and best practices.

Chapter 11, Oracle and High Availability, discusses availability concepts, what hap-
pens when the Oracle database recovers, protecting against system failure, Oracle’s
backup and recovery facilities, and high availability and failover solutions.

Chapter 12, Oracle and Hardware Architecture, describes your choice of computer
architectures, configuration considerations, and deployment strategies for Oracle,
including grid computing.

Chapter 13, Oracle Distributed Databases and Distributed Data, briefly summarizes
the Oracle facilities used in distributed processing including two-phase commits and
Streams Advanced Queuing and replication.

Chapter 14, Oracle Extended Datatypes, describes Oracle’s object-oriented features,
Java’s™ role, web services support, multimedia extensions to the Oracle datatypes,
content management using the database, spatial capabilities, and the extensibility
framework.

Chapter 15, Beyond the Oracle Database, describes Oracle Application Express,
deploying to the Web using the Oracle Application Server and Fusion Middleware,
and the overall use of Oracle in a Service-Oriented Architecture (SOA) environment.

Appendix A, What’s New in This Book for Oracle Database 11g, lists the Oracle
Database 11g changes described in this book.

Appendix B, Additional Resources, lists a variety of additional resources—both
online and offline—so you can do more detailed reading.

Conventions Used in This Book
The following typographical conventions are used in this book:

Italic
Used for file and directory names, emphasis, and the first occurrence of terms

Constant width
Used for code examples and literals

Constant width italic
In code examples, indicates an element (for example, a parameter) that you supply

xvi | Preface

UPPERCASE
Generally indicates Oracle keywords

lowercase
In code examples, generally indicates user-defined items such as variables

This icon indicates a tip, suggestion, or general note. For example,
we’ll tell you if you need to use a particular version of Oracle or if an
operation requires certain privileges.

This icon indicates a warning or caution. For example, we’ll tell you if
Oracle doesn’t behave as you’d expect or if a particular operation neg-
atively impacts performance.

How to Contact Us
Please address comments and questions concerning this book to the publisher:

O’Reilly Media, Inc.
1005 Gravenstein Highway North
Sebastopol, CA 95472
800-998-9938 (in the United States or Canada)
707-829-0515 (international/local)
707-829-0104 (fax)

There is a web page for this book, which lists errata, the text of several helpful tech-
nical papers, and any additional information. You can access this page at:

http://www.oreilly.com/catalog/9780596514549

To comment or ask technical questions about this book, send email to:

bookquestions@oreilly.com

For more information about books, conferences, software, Resource Centers, and the
O’Reilly Network, see the O’Reilly web site at:

http://www.oreilly.com

Using Code Examples
This book is here to help you get your job done. In general, you may use the code in
this book in your programs and documentation. You do not need to contact us for
permission unless you’re reproducing a significant portion of the code. For example,
writing a program that uses several chunks of code from this book does not require
permission. Selling or distributing a CD-ROM of examples from O’Reilly books does
require permission. Answering a question by citing this book and quoting example

http://www.oreilly.com/catalog/9780596514549
mailto:bookquestions@oreilly.com
http://www.oreilly.com

Preface | xvii

code does not require permission. Incorporating a significant amount of example
code from this book into your product’s documentation does require permission.

We appreciate, but do not require, attribution. An attribution usually includes the
title, author, publisher, and ISBN. For example: “Oracle Essentials: Oracle Database
11g, Fourth Edition, by Rick Greenwald, Robert Stackowiak, and Jonathan Stern.
Copyright 2008 O’Reilly Media Inc., 978-0-596-51454-9.”

If you feel your use of code examples falls outside fair use or the permission given
above, feel free to contact us at permissions@oreilly.com.

Safari® Books Online
When you see a Safari® Books Online icon on the cover of your
favorite technology book, that means the book is available online
through the O’Reilly Network Safari Bookshelf.

Safari offers a solution that’s better than e-books. It’s a virtual library that lets you
easily search thousands of top tech books, cut and paste code samples, download
chapters, and find quick answers when you need the most accurate, current informa-
tion. Try it for free at http://safari.oreilly.com.

Acknowledgments
Each of the authors has arrived at this collaboration through a different path, but we
would all like to thank the team at O’Reilly for making this book both possible and a
joy to write. We’d like to thank our first editor for this edition, Colleen Gorman, and
the rest of the O’Reilly crew, especially Sumita Mukherji, the production editor; Rob
Romano, who developed the figures; and Shan Young, who wrote the index. Also,
we’d like to thank our editor from the first three editions, Debby Russell, who was
among the first to see the value in such a book and who stepped in to perform final
editing on the fourth edition as well. It’s incredible how all of these folks were able to
strike the perfect balance—always there when we needed something, but leaving us
alone when we didn’t.

We’re all grateful to each other. Giving birth to a book is a difficult process, but it
can be harrowing when split three ways. Everyone hung in there and did their best
throughout this process. We’d also like to give our sincere thanks to the technical
reviewers for the fourth edition of this book: Darryl Hurley, Dwayne King, Arup
Nanda, and Bert Scalzo. Thanks as well to reviewers of previous editions: Craig Shal-
lahamer of OraPub, Domenick Ficarella, Jonathan Gennick, Jenny Gelhausen, and
Dave Klein. This crucially important work really enhanced the value of the book
you’re reading. And thanks as well to Lance Ashdown for clarifying Oracle database
writes.

mailto:permissions@oreilly.com

xviii | Preface

Rick thanks the incredibly bright and gifted people who have shared their wealth of
knowledge with him over the years, including Bruce Scott, Earl Stahl, Jerry Chang,
and Jim Milbery. In particular, he thanks the two individuals who have been his
technical mentors over the course of his entire career: Ed Hickland and Dave Klein,
who have repeatedly spent time explaining to and discussing with him some of the
broader and finer points of database technology.

For the later editions of this book, Rick would also like to thank all those colleagues
at Oracle who helped him in his time of need, checking on those last-minute clarifi-
cations, including John Lang, Bruce Lowenthal, Alice Watson, Dave Leroy, Sushil
Kumar, Mughees Minhas, Daniela Hansell, Penny Avril, Mark Townsend, and Mark
Drake. And a special thank-you to Jenny Tsai-Smith, who always seemed to have the
time and knowledge to clear up any Oracle database problem. And last, but cer-
tainly not least, his primary coauthor, Bob Stackowiak, who has become a good
friend over the years of collaboration.

Bob acknowledges all his friends over the years around the world at Oracle Corpora-
tion, and from earlier stints at IBM, Harris Computer Systems, and the U.S. Army
Corps of Engineers. Through personal relationships and email, they have shared a lot
and provided him with incredible opportunities for learning. At Oracle, he especially
thanks members of Andy Mendelsohn’s team who have always been helpful in pro-
viding material ahead of releases, including Mark Townsend, Raymond Roccaforte,
George Lumpkin, Hermann Baer, and many others. Bob also extends special thanks
to his team in Oracle’s Technology Business Unit that includes Louis Nagode, Jim
Bienski, Gayl Czaplicki, Alan Manewitz, Joan Maiorana, Sandrine Ost, and Max Riv-
era. His management continues to recognize the value of such projects, including
Mark Salser and Paul Cross. He’d also like to thank his customers, who have always
had the most practical experience using the products and tools he has worked with
and from whom he continues to learn. Finally, both Bob and Rick would like to
thank Sheila Cepero for adding them to the Oracle Database 11g beta program, an
important factor in enabling this book to appear so shortly after the initial release of
the new database version.

In earlier editions, Jonathan thanked many of his professional contacts in previous
editions, including Murray Golding, Sam Mele, and the Oracle Server Technologies
members and their teams, including Juan Tellez, Ron Weiss, Juan Loaiza, and Carol
Colrain for their help during his years at Oracle. And we thank him for all that he
gave us in too short a life.

1

Chapter 1 CHAPTER 1

Introducing Oracle1

Where do we start? One of the problems in comprehending a massive product such
as the Oracle database is getting a good sense of how the product works without
getting lost in the details. This book aims to provide a thorough grounding in the
concepts and technologies that form the foundation of Oracle’s Database Server,
currently known as Oracle Database 11g. The book is intended for a wide range of
Oracle database administrators, developers, and users, from the novice to the experi-
enced. It is our hope that once you have this basic understanding of the product,
you’ll be able to connect the dots when using Oracle’s voluminous feature set, docu-
mentation, and the many other books and publications that describe the database.

Oracle also offers an Application Server and Fusion Middleware, business intelli-
gence tools, and business applications (the E-Business Suite, PeopleSoft, JD
Edwards, Siebel, Hyperion, and Project Fusion). Since this book is focused on the
database, we will touch on these as they relate to specific Oracle database topics
covered.

This first chapter lays the groundwork for the rest of the book. Of all the chapters, it
covers the broadest range of topics. Most of these topics are discussed later in more
depth, but some of the basics—for example, the brief history of Oracle and the con-
tents of the different “flavors” of the Oracle database products—are unique to this
chapter.

Over the past 30 years, Oracle grew from being one of many vendors that developed
and sold a database product to being widely recognized as the database market
leader. Although early products were typical of a startup company, the Oracle data-
base quality and depth grew such that its technical capabilities are now often viewed
as the most advanced in the industry. With each database release, Oracle has
improved the scalability, functionality, and manageability of the database.

www.allitebooks.com

http://www.allitebooks.org

2 | Chapter 1: Introducing Oracle

This book is now in its fourth edition. This edition, like the second and third edi-
tions, required many changes since the database has changed a great deal over this
time. Highlights of Oracle releases include:

• Oracle8 (released in 1997) improved the performance and scalability of the data-
base and added the ability to create and store objects in the database.

• Oracle8i (released in 1999) added a new twist to the Oracle database—a combi-
nation of enhancements that made the Oracle8i database a focal point in the
world of Internet computing.

• Oracle9i (released in 2001) introduced Real Application Clusters as a replace-
ment for Oracle Parallel Server and added many management and data
warehousing features.

• Oracle Database 10g (released in 2003) enabled deployment of “grid” comput-
ing. A grid is simply a pool of computers and software resources providing
resources for applications on an as-needed basis. To support this style of com-
puting, Oracle added the ability to provision CPUs and data. Oracle Database
10g also further reduced the time, cost, and complexity of database manage-
ment through the introduction of self-managing features such as the Automated
Database Diagnostic Monitor, Automated Shared Memory Tuning, Automated
Storage Management, and Automated Disk Based Backup and Recovery.

• Oracle Database 11g (released in 2007) is the current release. Many of the self-
tuning and managing capabilities are further improved, especially Automatic
Memory Management, partitioning, and security. The lifecycle of database
change management is extended within Oracle’s Enterprise Manager as Oracle
now provides improved diagnosis capabilities and linkage to Oracle Support via
a Support Workbench. This version also features improved online patching
capabilities.

Before we dive into further details, let’s step back and look at how databases evolved,
how we arrived at the relational model, and Oracle’s history. We’ll then take an ini-
tial look at Oracle database packaging and key Oracle features today.

The Evolution of the Relational Database
The relational database concept was described first by Dr. Edgar F. Codd in an IBM
research publication entitled “System R4 Relational” that was published in 1970.
Initially, it was unclear whether any system based on this concept could achieve
commercial success. Nevertheless, a company named Software Development Labora-
tories Relational Software came into being in 1977 and then released a product

The Evolution of the Relational Database | 3

named Oracle V.2 as the world’s first commercial relational database within a cou-
ple of years (also changing its name to Relational Software, Incorporated). By 1985,
Oracle could claim more than 1,000 relational database customer sites. Curiously,
IBM would not embrace relational technology in a commercial product until the
Query Management Facility in 1983.

Why did relational database technology grow to become the de facto database tech-
nology? A look back at previous database technology may help to explain this
phenomenon.

Database management systems were first defined in the 1960s to provide a common
organizational framework for data formerly stored in independent files. In 1964,
Charles Bachman of General Electric proposed a network model with data records
linked together, forming intersecting sets of data, as shown on the left in Figure 1-1.
This work formed the basis of the CODASYL Data Base Task Group. Meanwhile,
the North American Aviation’s Space Division and IBM developed a second
approach based on a hierarchical model in 1965. In this model, data is represented as
tree structures in a hierarchy of records, as shown on the right in Figure 1-1. IBM’s
product based on this model was brought to market in 1969 as the Information Man-
agement System (IMS). As recently as 1980, almost all database implementations
used either the network or hierarchical approach. Although several competitors sold
similar technologies around 1980, only IMS could still be found in many large orga-
nizations 20 years later.

Figure 1-1. Network model (left) and hierarchical model (right)

4 | Chapter 1: Introducing Oracle

Relational Basics
The relational database uses the concept of linked two-dimensional tables consisting
of rows and columns, as shown in Figure 1-2. Unlike the hierarchical approach, no
predetermined relationship exists between distinct tables. This means that data
needed to link together the different areas of the network or hierarchical model need
not be defined. Because relational users don’t need to understand the representation
of data in storage to retrieve it (and many such users create ad hoc queries), ease of
use helped popularize the relational model.

Relational programming is nonprocedural and operates on a set of rows at a time. In
a master-detail relationship between tables, there can be one or many detail rows for
each individual master row, yet the statements used to access, insert, or modify the
data simply describe the set of results. In many early relational databases, data access
required the use of procedural languages that worked one record at a time. Because
of this set orientation, programs access more than one record in a relational data-
base more easily. Relational databases can be used more productively to extract
value from large groups of data.

The contents of the rows in Figure 1-2 are sometimes referred to as records. A col-
umn within a row is referred to as a field. Tables are stored in a database schema,
which is a logical organizational unit within the database. Other logical structures in
the schema often include the following:

Views
Provide a single view of data derived from one or more tables or views. The view
is an alternative interface to the data, which is stored in the underlying table(s)
that make up the view.

Figure 1-2. Relational model with two tables

EMPNO

71712
83321
85332
88888

EMPNAME

Johnson
Smith
Stern
Carter

TITLE

Clerk
Mgr
SC Mgr
Mgr

DEPTNO

10
20
30
10

DEPTNO DEPTNAME LOCATION

10
20
30
40

Accounting
Research
Sales
Operations

San Francisco
San Francisco
Chicago
Dallas

The Evolution of the Relational Database | 5

Sequences
Provide unique numbers for column values.

Stored procedures
Contain logical modules that can be called from programs.

Synonyms
Provide alternative names for database objects.

Indexes
Provide faster access to table rows.

Database links
Provide links between distributed databases.

The relationships between columns in different tables are typically described through
the use of keys, which are implemented through referential integrity constraints and
their supporting indexes. For example, in Figure 1-2, you can establish a link
between the DEPTNO column in the second table, which is called a foreign key, to
the DEPTNO column in the first table, which is referred to as the primary key of that
table.

Finally, even if you define many different indexes for a table, you don’t have to
understand them or manage the data they contain. Oracle includes a query optimizer
(described in Chapter 4) that chooses whether to use indexes, and the best way to
use those indexes, to access the data for any particular query.

The relational approach lent itself to the Structured Query Language (SQL). SQL
was initially defined over a period of years by IBM Research, but it was Oracle Cor-
poration that first introduced it to the market in 1979. SQL was noteworthy at the
time for being the only language needed for relational databases since you could use
SQL:

• For queries (using a SELECT statement)

• As a Data Manipulation Language or DML (using INSERT, UPDATE, and
DELETE statements)

• As a Data Definition Language or DDL (using CREATE or DROP statements
when adding or deleting tables)

• To set privileges for users or groups (using GRANT or REVOKE statements)

Today, SQL contains many extensions and follows ANSI/ISO standards that define
its basic syntax.

How Oracle Grew
In 1983, Relational Software Incorporated was renamed Oracle Corporation to avoid
confusion with a competitor named Relational Technologies Incorporated. At this
time, the developers made a critical decision to create a portable version of Oracle

6 | Chapter 1: Introducing Oracle

written in C (version 3) that ran not only on Digital VAX/VMS systems, but also on
Unix and other platforms. By 1985, Oracle claimed the ability to run on more than
30 platforms. Some of these platforms are historical curiosities today, but others
remain in use. (In addition to VMS, early operating systems supported by Oracle
included IBM MVS, HP/UX, IBM AIX, and Sun’s Solaris version of Unix.) Oracle
was able to leverage and accelerate the growth of minicomputers and Unix servers in
the 1980s. Today, Oracle also leverages this portability to operating systems such as
Microsoft Windows and Linux.

In addition to multiple platform support, other core Oracle messages from the mid-
1980s still ring true today, including complementary software development and
decision support (business intelligence) tools, ANSI standard SQL across platforms,
and connectivity over standard networks. Since the mid-1980s, the database deploy-
ment model has evolved from dedicated database application servers to client/server
to Internet computing implemented using browser-based clients accessing database
applications.

Oracle introduced many innovative technical features to the database as computing
and deployment models changed (from offering the first distributed database to sup-
porting the first Java Virtual Machine in the core database engine to enabling grid
computing). Oracle offered support for emerging standards such as XML, important
in deploying a Service-Oriented Architecture (SOA). Table 1-1 presents a short list of
Oracle’s major product introductions.

Table 1-1. History of Oracle introductions

Year Feature

1977 Software Development Laboratories founded by Larry Ellison, Bob Miner, Ed Oates

1979 Oracle version 2: first commercially available relational database to use SQL

1983 Oracle version 3: single code base for Oracle across multiple platforms

1984 Oracle version 4: with portable toolset, read consistency

1986 Oracle version 5 generally available: client/server Oracle relational database

1987 CASE and 4GL toolset

1988 Oracle Financial Applications built on relational database

1989 Oracle6 generally available: row-level locking and hot backups

1991 Oracle Parallel Server on massively parallel platforms

1993 Oracle7: with cost-based optimizer

1994 Oracle version 7.1 generally available: parallel operations including query, load, and create index

1996 Universal database with extended SQL via cartridges, thin client, and application server

1997 Oracle8 generally available: object-relational and Very Large Database (VLDB) features

1999 Oracle8i generally available: Java Virtual Machine (JVM) in the database

2000 Oracle9i Application Server generally available: Oracle tools integrated in middle tier

2001 Oracle9i Database Server generally available: Real Application Clusters, OLAP, and data mining in the database

The Oracle Database Family | 7

The Oracle Database Family
Oracle Database 11g is the most recent version of the Oracle Relational Database
Management System (RDBMS) family of products that share common source code.
The family of database products includes:

Oracle Enterprise Edition
Flagship database product and main topic of this book, aimed at large-scale
implementations that require Oracle’s full suite of database features and options.
For advanced security, only the Enterprise Edition features Virtual Private Data-
base (VPD) support, Fine-Grained Auditing, and options including the Database
Vault, Advanced Security, and Label Security. Data warehousing features only in
Enterprise Edition include compression of repeating stored data values, cross-
platform transportable tablespaces, Information Lifecycle Management (ILM),
materialized views query rewrite, and the Partitioning, OLAP, and Data Mining
Options. High-availability features unique to the Enterprise Edition include Data
Guard and Flashback database, Flashback table, and Flashback transaction
query. Added to Oracle Database 11g are an Advanced Compression Option for
all workloads, including transaction processing, Large Object (LOB) storage,
and backups; a database testing option called the Real Application Testing
Option that includes Database Replay and SQL Performance Analyzer; and a
Total Recall Option used to enable a Flashback Data Archive that retains data
for historic queries (where a SQL construct specifies an “AS OF” date in the
past).

Oracle Standard Edition
Oracle’s database intended for small and medium-sized implementations. This
database can be deployed onto server configurations containing up to 4 CPUs on
a single system or on a cluster using Real Application Clusters (RAC).

Oracle Standard Edition One
Designed for small implementations. This database can support up to 2 CPUs
and does not support RAC. The feature list is otherwise similar to Oracle Stan-
dard Edition.

2003 Oracle Database 10g and Oracle Application Server 10g: “grid” computing enabled; Oracle Database 10g
automates key management tasks

2005 Oracle completes PeopleSoft acquisition and announces Siebel acquisition, thus growing ERP and CRM applica-
tions and business intelligence offerings

2007 Oracle Database 11g: extension of self-managing capabilities and end-to-end database change management;
Hyperion acquisition adds database-independent OLAP and Financial Performance Management applications

Table 1-1. History of Oracle introductions (continued)

Year Feature

8 | Chapter 1: Introducing Oracle

Oracle Personal Edition
Database used by single developers to develop code for implementation on Ora-
cle multiuser databases. It requires a license, unlike Express Edition, but gives
you the full Enterprise Edition set of functionality.

Oracle Express Edition
Entry-level database from Oracle available at no charge for Windows and Linux.
This database is limited to 1 GB of memory and 4 GB of disk. It provides a sub-
set of the functionality in Standard Edition One, lacking features such as a Java
Virtual Machine, server-managed backup and recovery, and Automatic Storage
Management. Although this database is not manageable by Oracle Enterprise
Manager, you can deploy it for and manage multiple users through the Oracle
Application Express (formerly HTML-DB) administration interface.

Oracle generally releases new versions of the flagship database about every three to
four years. New releases typically follow themes and introduce a significant number
of new features. In recent releases, these themes are indicated in the product version
naming. In 1998, Oracle announced Oracle8i, with the “i” added to denote new
functionality supporting Internet deployment. Oracle9i continued using this theme.
In 2003, Oracle released Oracle Database 10g, with the “g” denoting Oracle’s focus
on emerging grid computing deployment models. Oracle has continued that theme
in the current database version highlighted in this book. In between major versions,
Oracle issues point releases that also add features but are more typically focused on
improvements to earlier capabilities.

The terms “Oracle,” “Oracle8,” “Oracle8i,” “Oracle9i,” “Oracle Database 10g,” and
“Oracle Database 11g” might appear to be used somewhat interchangeably in this
book because Oracle Database 11g includes all the features of previous versions.
When we describe a new feature that was first made available specifically in a cer-
tain release, we’ve tried to note that fact to avoid confusion, recognizing that many
of you maintain older releases of Oracle. We typically use the simple term “Oracle”
when describing features that are common to all these releases.

Oracle Development has developed releases using a single source code model for the
core family of database products since 1983. While each database implementation
includes some operating-system-specific source code at very low levels in order to
better leverage specific platforms, the interfaces that users, developers, and adminis-
trators deal with for each version are consistent. Since feature behavior is consistent
across platforms for implementations of these Oracle flavors, organizations can
migrate Oracle applications and databases easily among various hardware platform
vendors and operating systems. This development strategy also enables Oracle to
focus on implementing new features only once across its product set.

Database Application Development Features | 9

Summary of Oracle Database Features
The Oracle database is a broad product. To give some initial perspective, we begin
describing Oracle with a high-level overview of the basic areas of functionality. By
the end of this portion of the chapter, you will have orientation points to guide you
in exploring the topics in the rest of this book.

To give some structure to the broad spectrum of the Oracle database, we’ve orga-
nized our initial discussion of these features into the following sections:

• Database application development features

• Database connection features

• Distributed database features

• Data movement features

• Database performance features

• Database management features

• Database security features

In this chapter, we’ve included a lot of terminology and rather abbrevi-
ated descriptions of features. Oracle is a huge system. Our goal here is
to quickly familiarize you with the full range of features in the system.
Subsequent chapters will provide additional details. Obviously,
though, whole books have been written about some of the feature
areas summarized here.

Database Application Development Features
The Oracle database is typically used to store and retrieve data through applications.
The features of the Oracle database and related products described in this section are
used to create applications. We’ve divided the discussion in the following subsec-
tions into database programming and database extensibility options. Later in this
chapter, we will describe Oracle’s development tools and Oracle’s other embedded
database products that meet unique applications deployment needs.

Database Programming
All flavors of the Oracle database include languages and interfaces that enable
programmers to access and manipulate the data in the database. Database program-
ming features usually interest developers who are creating Oracle-based applications
to be sold commercially or IT organizations building applications unique to their
businesses. Data in Oracle can be accessed using SQL, ODBC, JDBC, SQLJ, OLE
DB, ODP.NET, SQL/XML, XQuery, and WebDAV. Programs deployed within the
database can be written in PL/SQL and Java.

10 | Chapter 1: Introducing Oracle

SQL

The ANSI standard Structured Query Language (SQL) provides basic functions for
data manipulation, transaction control, and record retrieval from the database. Most
business users of the database interact with Oracle through applications or business
intelligence tools that provide interfaces hiding the underlying SQL and its complexity.

PL/SQL

Oracle’s PL/SQL, a procedural language extension to SQL, is commonly used to
implement program logic modules for applications. PL/SQL can be used to build
stored procedures and triggers, looping controls, conditional statements, and error
handling. You can compile and store PL/SQL procedures in the database. You can
also execute PL/SQL blocks via SQL*Plus, an interactive tool provided with all ver-
sions of Oracle. PL/SQL program units can be precompiled.

Java

Oracle8i introduced the use of Java as a procedural language and a Java Virtual
Machine (JVM) in the database (originally called JServer). The JVM includes sup-
port for Java stored procedures, methods, triggers, Enterprise JavaBeans™ (EJBs),
CORBA, IIOP, and HTTP.

The inclusion of Java within the Oracle database allows Java developers to leverage
their skills as Oracle applications developers. Java applications can be deployed in
the client, Application Server, or database, depending on what is most appropriate.
Oracle Database 11g includes a just-in-time Java compiler that is enabled by default.
We briefly discuss some aspects of Java development in Chapter 14.

Oracle and web services

As of Oracle Database 11g, the database can serve as a web services provider imple-
mented through XML DB in the database. Web services enable SQL or XQuery to
submit queries and receive results as XML, or invoke PL/SQL functions or package
functions and to receive results. XQuery in Oracle Database 11g provides support for
the emerging JSR-225 standard and includes a number of performance enhancements.

Large objects

Interest in the use of large objects (LOBs) is growing, particularly for the storage of
nontraditional datatypes such as images. The Oracle database has been able to store
large objects for some time. Oracle8 added the capability to store multiple LOB col-
umns in each table. Oracle Database 10g essentially removed the space limitation on
large objects. Oracle Database 11g greatly improved the performance of query and
insert operations used with LOBs through the introduction of SecureFiles. Transpar-
ent data encryption is supported for SecureFiles LOB data.

Database Application Development Features | 11

Object-oriented programming

Support of object structures has existed since Oracle8i to provide support for an
object-oriented approach to programming. For example, programmers can create
user-defined datatypes, complete with their own methods and attributes. Oracle’s
object support includes a feature called Object Views through which object-oriented
programs can make use of relational data already stored in the database. You can
also store objects in the database as varying arrays (VARRAYs), nested tables, or
index organized tables (IOTs). We discuss the object-oriented features of Oracle fur-
ther in Chapter 14.

Third-generation languages (3GLs)

Programmers can interact with the Oracle database from C, C++, Java, or COBOL
by embedding SQL in those applications. Prior to compiling the applications using a
platform’s native compilers, you must run the embedded SQL code through a pre-
compiler. The precompiler replaces SQL statements with library calls the native
compiler can accept. Oracle provides support for this capability through optional
“programmer” precompilers for C and C++ using Pro*C and for COBOL using
Pro*COBOL. In recent Oracle versions, Oracle features SQLJ, a precompiler for Java
that replaces SQL statements embedded in Java with calls to a SQLJ runtime library,
also written in Java.

Database drivers

All versions of Oracle include database drivers that allow applications to access
Oracle via ODBC (the Open DataBase Connectivity standard) or JDBC (the Java
DataBase Connectivity open standard). Also available are data providers for OLE-DB
and for .NET.

The Oracle Call Interface

If you’re an experienced programmer seeking optimum performance, you may
choose to define SQL statements within host-language character strings and then
explicitly parse the statements, bind variables for them, and execute them using the
Oracle Call Interface (OCI). OCI is a much more detailed interface that requires
more programmer time and effort to create and debug. Developing an application
that uses OCI can be time-consuming, but the added functionality and incremental
performance gains could make spending the extra time worthwhile. In certain pro-
gramming scenarios, OCI improves application performance or adds functionality.
For instance, in high-availability implementations in which multiple systems share
disks using Real Application Clusters, you could write programs using OCI that
allow users to reattach to a second server transparently if the first fails.

www.allitebooks.com

http://www.allitebooks.org

12 | Chapter 1: Introducing Oracle

National Language Support

National Language Support (NLS) provides character sets and associated functional-
ity, such as date and numeric formats, for a variety of languages. Oracle Database
11g features Unicode 5.0 support. All data may be stored as Unicode, or select
columns may be incrementally stored as Unicode. UTF-8 encoding and UTF-16
encoding provide support for more than 57 languages and 200 character sets. Extensive
localization is provided (for example, for data formats), and customized localization can
be added through the Oracle Locale Builder. Oracle includes a Globalization Toolkit
for creating applications that will be used in multiple languages.

Database Extensibility
The Internet and corporate intranets have created a growing demand for storage and
manipulation of nontraditional datatypes within the database. There is a need for
extensions to the standard functionality of a database for storing and manipulating
image, audio, video, spatial, and time series information. These capabilities are
enabled through extensions to standard SQL. For more details regarding these fea-
tures of Oracle, see Chapter 14.

Oracle Multimedia

Oracle Multimedia (formerly interMedia) provides text manipulation and additional
image, audio, video, and locator functions in the database. Oracle Multimedia offers
the following major capabilities:

• The text portion of Multimedia (Oracle Text) can identify the gist of a docu-
ment by searching for themes and key phrases within the document.

• The image portion of Multimedia can store and retrieve images of various
formats; starting with Oracle Database 11g, these include DICOM medical
images.

• The audio and video portions of Multimedia can store and retrieve audio and
video clips, respectively.

• The locator portion of Multimedia can retrieve data that includes spatial coordi-
nate information.

Oracle content management

Oracle’s content management solutions include a Content Database Option used to
store and manage documents in the database and Stellent’s content management
applications that were acquired by Oracle in 2007. The applications include Univer-
sal Content Management, Universal Records Management, and Information Rights
Management.

Database Connection Features | 13

Oracle search capabilities

The Oracle Database and Application Server include a search tool named Ultra
Search. Ultra Search is typically used to search and gather location information for
text data stored within an organization’s network. Document retrieval is based on
user access rights. In addition, Oracle offers an alternative Secure Enterprise Search
offering that is more flexible in non-Oracle environments.

Oracle Spatial Option

The Spatial Option is available for Oracle Enterprise Edition. It can optimize the dis-
play and retrieval of data linked to coordinates and is used in the development of
spatial information systems. Several vendors of Geographic Information Systems
(GIS) products now bundle this option and leverage it as their search and retrieval
engine.

XML DB

Oracle added native XML datatype support to the Oracle9i database and XML and
SQL interchangeability for searching. The structured XML object is held natively in
object relational storage meeting the W3C DOM specification. The XPath syntax for
searching in SQL is based on the SQLX group specifications, and XQuery is also
supported.

Database Connection Features
The connection between the client and the database server is a key component of the
overall architecture. The database connection is responsible for supporting all com-
munications between an application and the data it uses. Oracle includes a number
of features that establish and tune your database connections, described in the fol-
lowing subsections. We’ve divided the discussion into two categories: database
networking and Oracle Application Server.

Database Networking
Database users connect to the database by establishing a network connection. You
can also link database servers via network connections. Oracle provides a number of
features to establish connections between users and the database and/or between
database servers, as described in the following subsections.

Oracle Net

Oracle’s network interface, Oracle Net, was formerly known as Net8 when used in
Oracle8, and SQL*Net when used with Oracle7 and previous versions of Oracle. You

14 | Chapter 1: Introducing Oracle

can use Oracle Net over a wide variety of network protocols, although TCP/IP is by
far the most common protocol today. Features associated with Oracle Net, such as
shared servers, are referred to as Oracle Net Services.

Oracle Internet Directory

The Oracle Internet Directory (OID) was introduced with Oracle8i. OID replaced
Oracle Names used in prior database releases since it gives users a way to connect to
an Oracle Server without having a client-side configuration file. OID is an LDAP
(Lightweight Directory Access Protocol) directory and so it supports Oracle Net and
other LDAP-enabled protocols.

Oracle Connection Manager

Each connection to the database takes up valuable network resources, which can
impact the overall performance of a database application. Oracle’s Connection Man-
ager (CMAN), illustrated in Figure 1-3, reduces the number of Oracle Net client
network connections to the database through the use of concentrators, which provide
connection multiplexing to implement multiple connections over a single network
connection. Connection multiplexing provides the greatest benefit when there are a
large number of active users.

Figure 1-3. Concentrators with Connection Managers for a large number of users

Database Server

Connection Managers

Clients

Database Connection Features | 15

You can also use the Connection Manager to provide multiprotocol connectivity if
you still have some clients and servers not using TCP/IP. Oracle Database 10g intro-
duced dynamic Connection Manager configuration, enabling the changing of CMAN
parameters without shutting down the CMAN process.

Oracle Application Server
The popularity of Internet and intranet applications led to a change in deployment
from client/server (with fat clients running a significant piece of the application) to a
three-tier architecture (with a browser supplying everything needed for a thin client).
Oracle Application Server enables deployment of the middle tier in a three-tier solu-
tion for web-based applications, component-based applications, and enterprise
application integration. Oracle Application Server is a key part of Oracle’s Fusion
Middleware and can be scaled across multiple middle-tier servers.

This product includes a web listener based on the popular Apache listener, servlets
and JavaServer Pages (JSPs), business logic, and/or data access components. Busi-
ness logic often is deployed as Enterprise JavaBeans (EJBs). Data access components
can include JDBC, SQLJ, and EJBs. TopLink provides a mapping tool that links Java
objects to the database via JDBC such that the Java developer need not build SQL
calls and or face broken Java applications resulting from database schema changes.

Oracle Application Server offers additional solutions in the cache, portal, business
intelligence, and wireless areas:

Cache
Oracle Application Server Web Cache introduced a middle tier for the caching of
web pages or portions of pages. An earlier cache, Oracle Application Server Data-
base Cache, was used for caching PL/SQL procedures and anonymous PL/SQL
blocks but is no longer supported as of Oracle Application Server 10g.

Portal
Oracle Application Server Portal is also a part of the Oracle Developer Suite
(discussed later in this chapter) and is used for building easy-to-use enterprise
dashboards. The developed portal is deployed to the Application Server.

Business Intelligence
Application Server Business Intelligence components include the Portal as well
as Oracle’s original business intelligence tools:

• Oracle Reports, which provides a scalable middle tier for the reporting of
prebuilt query results

• Oracle Discoverer, for ad hoc query and analysis

• A deployment platform for JDeveloper custom-built OLAP and data mining
applications

These capabilities are discussed in Chapter 10.

16 | Chapter 1: Introducing Oracle

Oracle Wireless
Oracle Wireless (formerly known as Oracle Portal-to-Go) includes:

• Content adapters for transforming content to XML

• Device transformers for transforming XML to device-specific markup
languages

• Personalization portals for service personalization of alerts, alert addresses,
location marks, and profiles; wireless personalization portal also used for the
creation, servicing, testing, and publishing of URL service and for user
management

Oracle Application Server is packaged in several editions: Enterprise Edition,
Standard Edition, Standard Edition One, and Java Edition, which includes key com-
ponents for Java developers. Portal, TopLink with the Application Development
Framework, and the Web Cache are included in the Standard Edition and in Stan-
dard Edition One. The Enterprise Edition adds the following capabilities: Forms
Services, Reports Services, Discoverer Viewer, Oracle Internet Directory, Oracle
Application Interconnect, Wireless Option, and integration with Enterprise Service
Bus (ESB). The Java Edition bundle includes an HTTP Server, OC4J, and TopLink
with the Application Development Framework. We provide more details about Ora-
cle Application Server in Chapter 15.

Oracle Application Server Enterprise Edition has several available options including:

BPEL Process Manager Option
Oracle’s Business Process Execution Language (BPEL) tool is designed for
Service-Oriented Architecture (SOA) environments and used for creating, man-
aging, and deploying cross-application business processes. It supports standards
such as BPEL, Web Services, XML, XSLT, XPATH, JMS, and JCA.

Business Activity Monitoring (BAM)
BAM is used for building real-time dashboards displaying key performance indi-
cators (KPIs) populated with data from alerts monitored via the Web.

BI Publisher
A publishing and report layout tool used in generating high-fidelity reports from
XML data.

Service Registry
The Oracle Service Registry enables publishing and advertising of services and
provides a System of Record for SOA services.

SOA Suite for Oracle Middleware
The Suite bundles Oracle Fusion Middleware SOA offerings, including BPEL,
BAM, business rules engine, Enterprise Service Bus (for messaging, routing, and
transformations), Web Services Management (including a policy manager and
monitoring dashboard), Web Services Registry, and applications and technology
adapters.

Distributed Database Features | 17

Communication and Mobility Server
This bundle includes TimesTen, and also provides a SIP Servlet Container,
enabler framework and enablers, voice access, and mobile access.

WebCenter
WebCenter is Oracle’s latest portal framework used for deploying portlets and
Ajax-based components, especially in Web 2.0 environments. It includes discus-
sion forums, presence server, instant message client, Wiki, VOIP call setup and
teardown, SIP Servlet Container, Java and Web Service APIs, Click-2-dial inte-
gration, and voice-enabled soft client.

Fusion Middleware Adapters
Adapters include Applications, Transaction Processing Monitors, EDI, and others.

The Fusion Middleware SOA Suite serves as the basis for Oracle’s Application
Integration Architecture (AIA). AIA also includes prepackaged business objects and
business processes known as Process Integration Packs and provides key underpin-
nings used in integrating Oracle’s current and future applications.

Distributed Database Features
The Oracle database is well known for its ability to handle extremely large volumes
of data and users. Oracle not only scales through deployment on increasingly power-
ful single platforms, but also can be deployed in distributed configurations. Oracle
deployed on multiple platforms can be combined to act as a single logical distrib-
uted database.

This section describes some of the basic ways that Oracle handles database interac-
tions in a distributed database system.

Distributed Queries and Transactions
Data within an organization is often spread among multiple databases for reasons of
both capacity and organizational responsibility. Users may want to query this distrib-
uted data or update it as if it existed within a single database.

Oracle first introduced distributed databases in response to the requirements for
accessing data on multiple platforms in the early 1980s. Distributed queries can
retrieve data from multiple databases. Distributed transactions can insert, update, or
delete data on distributed databases. Oracle’s two-phase commit mechanism,
described in Chapter 13, guarantees that all the database servers that are part of a
transaction will either commit or roll back the transaction. Background recovery pro-
cesses can ensure database consistency in the event of system interruption during
distributed transactions. Once the failed system comes back online, the same pro-
cess will complete the distributed transactions.

18 | Chapter 1: Introducing Oracle

Distributed transactions can also be implemented using popular transaction moni-
tors (TPs) that interact with Oracle via XA, an industry-standard (X/Open) interface.
Oracle8i added native transaction coordination with the Microsoft Transaction
Server (MTS), so you can implement a distributed transaction initiated under the
control of MTS through an Oracle database.

Heterogeneous Services
Heterogeneous Services allow non-Oracle data and services to be accessed from an
Oracle database through generic connectivity via ODBC and OLE-DB included with
the database.

Optional Transparent Gateways use agents specifically tailored for a variety of target
systems. Transparent Gateways allow users to submit Oracle SQL statements to a
non-Oracle distributed database source and have them automatically translated into
the SQL dialect of the non-Oracle source system, which remains transparent to the
user. In addition to providing underlying SQL services, Heterogeneous Services
provide transaction services utilizing Oracle’s two-phase commit with non-Oracle
databases and procedural services that call third-generation language routines on
non-Oracle systems. Users interact with the Oracle database as if all objects are
stored in the Oracle database, and Heterogeneous Services handle the transparent
interaction with the foreign database on the user’s behalf.

Data Movement Features
Moving data from one Oracle database to another is often a requirement when using
distributed databases, or when a user wants to implement multiple copies of the
same database in multiple locations to reduce network traffic or increase data avail-
ability. You can export data and data dictionaries (metadata) from one database and
import them into another. Oracle Database 10g introduced a high-speed data pump
for the import and export.

Oracle also offers many other advanced features in this category, including transport-
able tablespaces, Advanced Queuing/Oracle Streams, and extraction, transformation
and loading (ETL) solutions. We introduce these next.

Transportable Tablespaces
Transportable tablespaces first appeared in Oracle8i. Instead of using the export/
import process, which dumps data and the structures that contain it into an interme-
diate file for loading, you can place a tablespace in read-only mode, move or copy it
from one database to another, and then mount it. The same data dictionary (meta-
data) describing the tablespace must exist on the source and the target. This feature
can save a lot of time since it simplifies the movement of large amounts of data.

Data Movement Features | 19

Starting with Oracle Database 10g, you can move data with transportable tablespaces
between heterogeneous platforms or operating systems.

Advanced Queuing and Oracle Streams
Advanced Queuing (AQ), first introduced in Oracle8, provides the means to asyn-
chronously send messages from one Oracle database to another. Because messages
are stored in a queue in the database and sent asynchronously when a connection is
made, the amount of overhead and network traffic is much lower than it would be
using traditional guaranteed delivery through the two-phase commit protocol
between source and target. By storing the messages in the database, AQ provides a
solution with greater recoverability than other queuing solutions that store messages
in filesystems.

Oracle messaging adds the capability to develop and deploy a content-based publish
and subscribe solution using a rules engine to determine relevant subscribing applica-
tions. As new content is published to a subscriber list, the rules on the list determine
which subscribers should receive the content. This approach means that a single list
can efficiently serve the needs of different subscriber communities. In the first release
of Oracle9i, AQ added XML support and Oracle Internet Directory (OID)
integration.

As of the second release of Oracle9i, AQ became part of Oracle Streams. Streams has
three major components: log-based replication for data capture, queuing for data
staging, and user-defined rules for data consumption. Since Oracle Database 10g,
Streams also includes support for change data capture and file transfer solutions.
Streams is managed through Oracle Enterprise Manager and described in more detail
in Chapter 13.

Extraction, Transformation, and Loading
Oracle Warehouse Builder (OWB) is a tool used in the design of target databases,
especially data warehouses, and provides a metadata repository. However, it is best
known as a GUI-based tool used in building source-to-target maps and for generat-
ing extraction, transformation, and loading (ETL) scripts. OWB leverages key
embedded ETL features in the Oracle database first made available in Oracle9i.
OWB is included with the Oracle database as of Oracle Database 10g Release 2. We
describe it further in Chapter 10.

Optionally, Oracle also offers a data integration tool, Oracle Data Integrator (ODI),
that is not as Oracle database-centric as OWB (although the Oracle database can be
a source and/or target). Oracle Data Integrator is based on a product and company
that Oracle acquired named Sunopsis. In addition to providing ETL capabilities,
ODI can generate code as web services for SOA deployment and is a key part of Ora-
cle’s SOA integration strategy.

20 | Chapter 1: Introducing Oracle

Database Performance Features
Oracle includes several features specifically designed to boost performance in certain
situations. We’ve divided the discussion in the following subsections into two cate-
gories: database parallelization and data warehousing.

Database Parallelization
Database tasks implemented in parallel speed up querying, tuning, and maintenance
of the database. By breaking up a single task into smaller tasks and assigning each
subtask to an independent process, you can dramatically improve the performance of
certain types of database operations. Examples of query features implemented in par-
allel include:

• Table scans

• Nested loops

• Sort merge joins

• GROUP BYs

• NOT IN subqueries (anti-joins)

• User-defined functions

• Index scans

• Select distinct UNION and UNION ALL

• Hash joins

• ORDER BY and aggregation

• Bitmap star joins

• Partition-wise joins

• Stored procedures (PL/SQL, Java, external routines)

In addition to parallel query, many other Oracle features and capabilities are parallel-
ized. Parallel operations are further identified and described in Chapter 7.

Data Warehousing and Business Intelligence
While parallel features improve the overall performance of the Oracle database, Ora-
cle also has particular performance enhancements for business intelligence and data
warehousing applications. We introduce many of them here, but see Chapter 10 for
more detailed explanations of products and features specific to data warehousing
and business intelligence.

Database Performance Features | 21

Bitmap indexes

Oracle added support for stored bitmap indexes to Oracle 7.3 to provide a fast way
of selecting and retrieving certain types of data. Bitmap indexes typically work best
for columns that have few different values relative to the overall number of rows in a
table.

Rather than storing the actual value, a bitmap index uses an individual bit for each
potential value with the bit either “on” (set to 1) to indicate that the row contains the
value or “off” (set to 0) to indicate that the row does not contain the value. Bitmap
indexes are described in more detail in Chapter 4.

Star query optimization

Typical data warehousing queries occur against a large fact table with foreign keys to
much smaller dimension tables. Oracle added an optimization for this type of star
query in Oracle 7.3. Performance gains are realized through the use of Cartesian
product joins of dimension tables with a single join back to the large fact table.
Oracle8 introduced a further mechanism called a parallel bitmap star join, which uses
bitmap indexes on the foreign keys to the dimension tables to speed star joins involv-
ing a large number of dimension tables.

Materialized views

Since Oracle8i, materialized views have provided another means of achieving a sig-
nificant speedup of query performance. Summary-level information derived from a
fact table and grouped along dimension values is stored as a materialized view. Que-
ries that can use this view are directed to the view, transparently to the user and the
SQL they submit. Oracle has continued to improve optimizer usage of materialized
views with each new release of the database.

Analytic functions

A growing trend in Oracle and other databases is inclusion of SQL-accessible analytic
and statistical functions in the database. Oracle first introduced such capabilities in
Oracle8i with the CUBE and ROLLUP functions. Today, the functionality provided
also includes ranking functions, windowing aggregate functions, lag and lead
functions, reporting aggregate functions, statistical aggregates, linear regression,
descriptive statistics, correlations, crosstabs, hypothesis testing, distribution fitting,
and Pareto analysis.

OLAP Option

The OLAP Option physically stores dimensionally aware cubes in the Oracle rela-
tional database. These cubes are most frequently accessed using SQL, although a

www.allitebooks.com

http://www.allitebooks.org

22 | Chapter 1: Introducing Oracle

Java API is also supported. As of Oracle Database 11g, Oracle’s optimizer recognizes
the levels within these cubes. As a result, any business intelligence tool that submits
SQL to an Oracle database can transparently take advantage of the improved perfor-
mance offered by deployment of this option. Refreshes of the values in these cubes
are now maintained similar to refreshing materialized views.

Data Mining Option

Since Oracle9i, popular data-mining algorithms have been embedded in the data-
base through the Data Mining Option and are exposed through a PL/SQL or Java
data-mining API. Data-mining applications that use these algorithms are typically
built using Oracle’s DataMiner or using data-mining tools from Oracle partners such
as InforSense and SPSS. Algorithms available in the Data Mining Option for Oracle
Database 11g include Naïve Bayes, Associations, Adaptive Bayes Networks, Cluster-
ing, Support Vector Machines (SVM), Nonnegative Matrix Factorization (NMF),
Decision Trees, and Generalized Linear Models.

Business intelligence tools

Oracle data warehouses are often accessed using business intelligence tools from
other popular vendors. However, Oracle’s own tools became more common for such
deployment as Oracle grew its offerings through acquisitions. Oracle’s initial offer-
ing included Oracle Discoverer and Reports, and these tools remain available in the
Application Server or as a standalone Oracle Business Intelligence Standard Edition
Suite.

Oracle’s flagship product in this area is Oracle Business Intelligence Enterprise Edi-
tion Suite (OBI EE) originally consisting of former Siebel Analytics, including Oracle
Answers, Dashboards, Delivers, BI Publisher, and Office Plug-ins. Oracle expanded
this offering in OBI EE Plus adding Hyperion components that include Foundation
Services, Interactive Reporting, SQR production reporting, Financial Reporting,
SmartView for Office, and Web Analysis.

Essbase is available as an option for providing an OLAP cube and functionality inde-
pendently of the data warehouse database. A subset OBI EE is included in Business
Intelligence Standard Edition One, along with the Oracle Standard Edition One data-
base and Oracle Warehouse Builder.

Oracle also offers business intelligence applications that include data models and
reporting and analysis with prepopulated business metadata. Flagship applications
include Oracle’s Business Intelligence Applications (the former Siebel Business Ana-
lytics applications) and Hyperion Financial Performance Management applications.

Database Management Features | 23

Database Management Features
Oracle includes many features that make the database easier to manage. Ease in Ora-
cle management fundamentally improved with the introduction of Oracle Database
10g, and has continued to evolve toward being more self-tuning and self-managing
with the release of Oracle Database 11g. If you are still managing Oracle databases
using techniques (such as scripts) from previous releases and are moving to one of
the newer releases, now is the time to reevaluate your thinking on management.

Starting with Oracle Database 10g, statistics are automatically gathered to an Auto-
matic Workload Repository (AWR) within the database. Oracle’s Automatic Database
Diagnostic Monitor (ADDM) evaluates the statistics on a regular basis and sends alerts
of potential problem conditions to Oracle Enterprise Manager, where you can evalu-
ate the condition in more detail and potentially take corrective actions. Some of the
newer fully automated features, such as Automatic Memory Management, also lever-
age data gathered in the AWR.

Oracle has a near real-time view of current database conditions as it makes auto-
mated recommendations. Such recommendations will often be more accurate than
would be possible with the manual processes you might have used in the past. In the
following subsections we’ll introduce the impact this has on Oracle Enterprise Man-
ager and add-on packs, Information Lifecycle Management, backup and recovery,
and database availability.

Oracle Enterprise Manager
Oracle includes Oracle Enterprise Manager (EM) with its most widely deployed
database products. EM provides a database management tool framework and an
HTML-based interface used to manage database users, instances, and features. EM
can also manage Oracle Application Server, Oracle Applications, Oracle’s Linux
release, and software products from other vendors.

The database console in Oracle’s current version provides information on database
status, availability, schema, data movement configuration, and software mainte-
nance. New with Oracle Database 11g is the Support Workbench and diagnosability
infrastructure leveraged in reporting problems to Oracle Support. Multiple database
administrators can access the EM repository at the same time.

EM can be deployed in several ways: as a central console for monitoring multiple
databases leveraging agents, as a “product console” (installed by default with each
individual database), or through remote access, also known as “studio mode.” When
deployed as a central console, Enterprise Manager is referred to as “Grid Control”
and can be used for rapid installation of Oracle software, provisioning, and auto-
mated rolling patch updates.

24 | Chapter 1: Introducing Oracle

A subset of Enterprise Manager functionality is accessible through Microsoft Pocket
PC Internet Explorer on wireless PDAs using EM2Go. EM2Go can monitor the sta-
tus of the Oracle database and Oracle Application Server.

Information Lifecycle Management and ILM Assistant
Introduced in 2006, Information Lifecycle Management (ILM) provides a means to
define classes of data and storage tiers and move the data to the storage tiers that
provide the right combination of performance and cost. The ILM Assistant interface
for setting up and managing ILM can be downloaded from the Oracle Technology
Network at http://otn.oracle.com. For more details, see Chapter 5.

Backup and Recovery
As every database administrator knows, backing up a database is a rather mundane
but necessary task. An improper backup makes recovery difficult, if not impossible.
Unfortunately, people often realize the extreme importance of this everyday task only
after losing business-critical data resulting from a failure of a related system.

The following sections introduce some features used in performing database backup
operations. We discuss backup and recovery strategies and options in much greater
detail in Chapter 11.

Recovery Manager

Typical kinds of backups include complete database backups (the most common
type), tablespace backups, datafile backups, control file backups, and archivelog
backups. Oracle8 introduced the Recovery Manager (RMAN) for the server-managed
backup and recovery of the database, leveraging a Recovery Catalog stored in the
database. RMAN can automatically locate, back up, restore, and recover datafiles,
control files, and archived redo logs. Since Oracle9i, RMAN can restart backups and
restore and implement recovery window policies when backups expire. Oracle Enter-
prise Manager provides a GUI-based interface to RMAN. Oracle Enterprise Manager
10g introduced an improved job scheduler that can be used with RMAN for manag-
ing automatic backups to disk.

Incremental backup and recovery

RMAN can perform incremental backups of Enterprise Edition databases. Incremen-
tal backups will back up only the blocks modified since the last backup of a datafile,
tablespace, or database; thus, they’re smaller and faster than complete backups.
RMAN can also perform point-in-time recovery, which allows the recovery of data
until just prior to an undesirable event (such as the mistaken dropping of a table).

http://otn.oracle.com
http://otn.oracle.com

Database Management Features | 25

Oracle Secure Backup

Various media-management software vendors leverage Oracle’s RMAN, but starting
with Oracle Database 10g, the database also includes an entry-level tape storage
management solution of its own known as Oracle Secure Backup XE. Optionally,
Oracle offers an enterprise-class backup solution simply named Oracle Secure
Backup.

Database Availability
Database availability depends upon the reliability and management of the database,
the underlying operating system, and the specific hardware components of the sys-
tem. Oracle has improved availability by reducing backup and recovery times by:

• Providing online and parallel backup and recovery

• Improving the management of online data through range partitioning

• Leveraging hardware capabilities for improved monitoring and failover

The relevant features are described in the following subsections.

Partitioning option

Oracle introduced partitioning as an option with Oracle8 to provide a higher degree
of manageability and availability. You can take individual partitions offline for main-
tenance while other partitions remain available for user access. In data warehousing
implementations, partitioning is sometimes used to implement rolling windows based
on date ranges. Other partitioning types include hash partitioning (used to divide data
into partitions using a hashing function and providing an even distribution of data)
and list partitioning (enabling partitioning of data based on discrete values such as
geography). Starting with Oracle Database 11g, interval partitioning can also be used
to automatically create new fixed ranges as needed during data insertions.

Many of these partitioning types can be used in combination as “composite” parti-
tions. Examples of composite partitions in Oracle Database 11g include range-range,
range-hash, range-list, list-range, list-hash, and list-list.

Data Guard

Oracle first introduced a standby database feature in Oracle 7.3. The standby data-
base provides a copy of the production database to be used if the primary database is
lost—for example, in the event of primary site failure or during routine mainte-
nance. Primary and standby databases may be geographically separated. The standby
database is created from a copy of the production database and updated through the
application of archived redo logs generated by the production database. Data Guard,

26 | Chapter 1: Introducing Oracle

first introduced in Oracle9i, fully automates this process; previously, you had to
manually copy and apply the logs. Agents are deployed on both the production and
standby database, and a Data Guard Broker coordinates commands. A single Data
Guard command invokes the eight steps required for failover.

In addition to providing physical standby database support, Data Guard can create a
logical standby database. In this scenario, Oracle archive logs are transformed into
SQL transactions and applied to an open standby database.

Oracle Database 10g introduced several new features, including support for real-time
application of redo data, integration with the Flashback database feature, and
archivelog compression. Starting with Oracle Database 10g, rolling upgrades are
supported. As of Oracle Database 11g, the Active Data Guard Opton enables the
standby database to be used for queries, sorting, and reporting even as changes from
the production system are being applied.

Fail Safe

The Fail Safe feature provides a higher level of reliability for an Oracle database.
Failover is implemented through a second system or node that provides access to
data residing on a shared disk when the first system or node fails. Oracle Fail Safe for
Windows, in combination with Microsoft Cluster Services, provides a failover solu-
tion in the event of a system failure.

Fail Safe is primarily a disaster recovery tool, so some downtime does occur as part
of a failover operation. The recommended solution for server availability, since
Oracle9i, is Real Application Clusters.

Oracle Real Application Clusters

Real Application Clusters (RAC) replaced the Oracle Parallel Server (OPS) option
beginning with Oracle9i. RAC can provide failover support as well as increased scal-
ability on Unix, Linux, and Windows clusters. Key to improved scalability was the
introduction of Cache Fusion that greatly minimizes the amount of writing to disk
that was formerly used to control data locks. Oracle Database 10g introduced a new
level of RAC portability and Oracle support by providing integrated “clusterware”
for the supported RAC platforms.

With Real Application Clusters, you can deploy multiple Oracle instances on multi-
ple nodes of a clustered solution or in a grid configuration. RAC coordinates traffic
among the systems or nodes, allowing the instances to function as a single database.
As a result, the database has proven to scale across dozens of nodes. Since the cluster
provides a means by which multiple instances can access the same data, the failure of
a single instance will not cause extensive delays while the system recovers. You can
simply redirect users to another instance that’s still operating. Applications can lever-
age the Oracle Call Interface (OCI) to provide failover to a second instance transpar-
ently to the user.

Database Security Features | 27

Data Guard and RAC

Data Guard and RAC in combination replaced Parallel Fail Safe beginning with
Oracle9i. Data Guard provides automated failover with bounded recovery time in
conjunction with Oracle Real Application Clusters. In addition, it provides client
rerouting from the failed instance to the instance that is available with fast reconnect
and automatically captures diagnostic data.

Automated Storage Management

Oracle Database 10g introduced Automated Storage Management (ASM), which
provides optimum striping and mirroring of data for performance and availability.
Because ASM is managed through Enterprise Manager, the database administrator
now can perform this critical management task. The need to coordinate this activity
with a system administrator is thus greatly reduced.

Real Application Testing Option
Oracle Database 11g introduced the capability to rerun production workloads and test
system changes through the Real Application Testing Option. This database option
includes a Database Replay facility and the SQL Performance Analyzer. Database
Replay captures production workload information, including concurrency, dependen-
cies, and timing. It transforms the workload capture files into replay files, provides a
Replay Client for processing the replay files, and provides the means to report on perfor-
mance statistics and any errors that might occur. The SQL Performance Analyzer cap-
tures a SQL workload to be analyzed, measures the performance before database
changes and afterward, and identifies performance changes among SQL statements.

Database Security Features
Oracle includes basic security for managing user access through roles and privileges.
These can be managed through Enterprise Manager on a local basis or on a global
basis by leveraging Oracle’s enterprise user security, a feature in the Advanced Secu-
rity Option. We describe Oracle’s database security features in Chapter 6.

Database security features allow you to implement a Virtual Private Database (VPD)
using Oracle by creating and attaching policies to database tables, views, or syn-
onyms. These policies are then enforced by placing a predicate WHERE clause on
SELECT, INSERT, UPDATE, DELETE, and/or INDEX statements.

Many organizations face the need to meet more stringent compliance requirements
for improved data protection, although database usage now can extend beyond orga-
nizational boundaries. Oracle has added several options to the database to enable
secure deployment in such challenging environments. These options include the
Advanced Security Option, Label Security Option, Database Vault, and Audit Vault.

28 | Chapter 1: Introducing Oracle

Advanced Security Option
The Advanced Security Option was once known as the Advanced Networking
Option (ANO). Key features for enabling a more secure Oracle Net include use of
encryption services such as RSA Data Security’s RC4, the U.S. Data Encryption
Stanadard (DES), Triple DES, and the Advanced Encryption Standard (AES).
Authentication can be through Kerberos, RADIUS, or the Distributed Computing
Environment (DCE). Network data integrity checking uses MD5 or SHA-1. Oracle
Database 11g added enhanced transparent data encryption and expanded Kerberos
authentication leveraging of Oracle’s encryption types.

Label Security Option
Oracle Label Security controls access to data by comparing labels assigned to rows of
data with label authorizations granted to users through their privileges. Multiple
authorization levels are possible within a single database. Label security authoriza-
tions are managed through a Policy Manager. Policies are enforced in the database
instead of through views, thus greatly simplifying management of data accessibility
and providing a more secure implementation.

Database Vault Option
Oracle Database Vault Option provides fine-grained access control to data for every-
one with access to the database, including database administrators. The security
administrator can set factors to define access to the database and audit specific
dimensions of security. At a more granular level, realms can be defined for limiting
access to specific schemas and roles.

Audit Vault Server
Oracle Audit Vault Server monitors database audit tables, redo logs, and operating
system audit files for suspicious activities. It can then generate reports or send alerts
showing where such unusual activity is occurring.

Oracle Development Tools
Many Oracle tools are available to developers to help them present data and build
more sophisticated Oracle database applications. Although this book focuses on the
Oracle database, this section briefly describes the main Oracle tools for application
development: Oracle JDeveloper, Oracle SQL Developer, and Oracle Developer
Suite. The Developer Suite, sometimes referred to as the Oracle Internet Developer
Suite, consists of Oracle Forms Developer, Oracle Reports Developer, Oracle
Designer, Oracle Discoverer Administrative Edition, and Oracle Portal.

Oracle Development Tools | 29

Oracle JDeveloper
Oracle JDeveloper was introduced by Oracle in 1998 to enable the development of
basic Java applications without the need to write code. JDeveloper is now available
for free and can be downloaded from the Oracle Technology Network. It includes a
Data Form wizard, a Beans Express wizard for creating JavaBeans and BeanInfo
classes, and a Deployment wizard. JDeveloper includes database development
features such as various Oracle drivers, a Connection Editor to hide the JDBC API
complexity, database components to bind visual controls, and a SQLJ precompiler
for embedding SQL in Java code that you can then use with Oracle. You can also
deploy applications developed using JDeveloper to Oracle’s Application Server.
Although JDeveloper uses wizards to allow programmers to create Java objects with-
out writing code, the end result is generated Java code.

Oracle SQL Developer
Oracle SQL Developer was introduced in 2006 and can be used to connect to any
Oracle database dating back to Oracle9i Release 2. SQL Developer can create con-
nections to Oracle databases, browse database objects, create and modify database
objects, query and update data, export data and DDL, import data, process
commands, and run and create reports. The product’s tools support the editing,
debugging, and running of PL/SQL scripts. In addition, SQL Developer can be
pointed at non-Oracle databases to view their database objects and data, and it pro-
vides capabilities to begin a migration to an Oracle database.

SQL Developer is available at no charge and can be downloaded from the Oracle
Technology Network. Versions are available for Windows, Linux, and Apple Mac
OS X. Oracle also hosts a SQL Developer forum at the Oracle Technology Network
site.

Oracle Forms Developer
Oracle Forms Developer is a tool for building forms-based applications and charts
for deployment as traditional client/server applications or as three-tier browser-based
applications via Oracle Application Server. Developer is a fourth-generation lan-
guage (4GL). With a 4GL, you define applications by defining values for properties,
rather than by writing procedural code. Developer supports a wide variety of clients,
including traditional client/server and Java-based clients. The Forms Builder includes
a built-in JVM for previewing web applications.

Oracle Reports Developer
Oracle Reports Developer provides a development and deployment environment for
rapidly building and publishing web-based reports via Reports for Oracle Application

30 | Chapter 1: Introducing Oracle

Server. Data can be formatted in tables, matrices, group reports, graphs, and combina-
tions. High-quality presentation is possible using the HTML extension Cascading
Style Sheets (CSS).

Oracle Designer
Oracle Designer provides a graphical interface for Rapid Application Development
(RAD) for the entire database development process—from building the business
model to schema design, generation, and deployment. Designs and changes are
stored in a multiuser repository. The tool can reverse-engineer existing tables and
database schemas for reuse and redesign from Oracle and non-Oracle relational
databases.

Designer also includes generators for creating applications for Oracle Developer,
HTML clients using Oracle Application Server, and C++. Designer can generate
applications and reverse-engineer existing applications or applications that have been
modified by developers. This capability enables a process called round-trip engineer-
ing, in which a developer uses Designer to generate an application, modifies the
generated application, and reverse-engineers the changes back into the Designer
repository.

Oracle Discoverer Administration Edition
Oracle Discoverer Administration Edition enables administrators to set up and main-
tain the Discoverer End User Layer (EUL) for Oracle’s previous generation of
business intelligence tools. The purpose of this layer is to shield business analysts
using Discoverer as an ad hoc query and analysis tool from SQL complexity. Wiz-
ards guide the administrator through the process of building the EUL. In addition,
administrators can place limits on resources available to analysts monitored by the
Discoverer query governor.

Oracle Portal
Oracle Portal, introduced as WebDB in 1999, provides an HTML-based tool for
developing web-enabled applications and content-driven web sites. Portal applica-
tion systems are developed and deployed in a simple browser environment. Portal
includes wizards for developing application components incorporating “servlets” and
access to other HTTP web sites. Portals can be designed to be user-customizable and
are deployed to the middle-tier Oracle Application Server.

Oracle Portal brought a key enhancement to WebDB, the ability to create and use
portlets, which allow a single web page to be divided up into different areas that can
independently display information and interact with the user. For example, Oracle
Answers, Discoverer, and Reports can be accessed as portlets.

Embedded Databases | 31

Oracle’s next generation portal framework product, introduced in 2006, and ini-
tially made available as an Application Server option is WebCenter.

Embedded Databases
Although Oracle’s database family can be deployed for embedded applications, the
footprint and functionality might be more than what you need. Today, Oracle offers
other embedded databases including TimesTen, Berkeley DB, and Oracle Database
Lite. These database engines have unique code lines in order to provide small foot-
prints and have different intended roles. For this reason, we will describe these
briefly in the following subsections but will not explore their capabilities in great
detail elsewhere in this book.

Oracle TimesTen
Oracle TimesTen is a relational database that is stored in physical memory and is
typically used where very high-performance transaction-processing workloads are
present. Access to the TimesTen database is available through SQL, JDBC, JMS, and
ODBC. TimesTen databases can be deployed as exclusive or shared and can be cre-
ated as permanent or temporary.

The database is refreshed by gathering data using TimesTen libraries deployed to
applications or by using a Cache Connect option to an Oracle database. Because
data is read and updated in memory, average update or read response times are typi-
cally measured in the millionths of seconds. The Cache Connect option supports
both read and write caching of Oracle database data. Updates can be bidirectional
between TimesTen and Oracle.

As is typical for embedded databases, TimesTen requires almost no ongoing admin-
istration. Replication is possible from one TimesTen database to another through an
option and is, by default, asynchronous.

Oracle Berkeley DB
Oracle Berkeley DB is an extremely small-footprint embedded database engine pro-
viding record-level locking. It comes in Java and XML versions. It is designed to be
deployed with and run in the same process as your applications. When Berkeley DB
is deployed in this manner, no separate database administration is required. Foot-
prints for the database can be as small as 400 KB.

The Java Edition of Berkeley DB supports the Java Transaction API (JTA), J2EE
Connector Architecture (JCA), and Java Management Extensions (JMX). The data-
base is a single JAR file that is 820 KB in size and runs in the same Java Virtual
Machine (JVM) as the application. A Direct Persistence Layer (DPL) is supported for
accessing Java objects.

www.allitebooks.com

http://www.allitebooks.org

32 | Chapter 1: Introducing Oracle

The XML Edition of Berkeley DB is most commonly used in network-based applica-
tions where content is managed. XQuery and XPath are supported.

Both editions can be configured for high availability using replication. Automatic
recovery is also supported. Deployment decisions such as these are made by the
application designer at application design time.

Oracle Lite
Oracle Lite is a suite of products enabling mobile use of database-centric applica-
tions. Key components of Oracle Lite include the Oracle Lite Database, Mobile
Development Kit, and Mobile Server (an extension of the Oracle Application Server).

The Oracle Lite Database engine requires a 50KB to 1 MB footprint depending on
the platform. Applications written using Mobile SQL, C++, and Java can use the
database. ODBC is also supported. Java support includes Java stored procedures and
JDBC. The Oracle Lite Database is also designed to be self-tuning and self-
administering and is supported on handheld devices running Windows CE,
Symbian, Windows, and Linux.

In typical usage of Oracle Lite, the user will link her handheld or mobile device run-
ning the Oracle Lite Database to a large-footprint Oracle Database Server. Data is
then automatically synchronized between the two systems. The user will then
remove the link and work in disconnected mode. After she has performed her tasks,
she will relink and resynchronize the data with the Oracle Database Server.

Oracle Lite supports a variety of synchronization capabilities, including the
following:

• Bidirectional synchronization between the mobile device and Oracle’s larger
footprint databases

• Publish-and-subscribe based models

• Support for protocols such as TCP/IP, HTTP, CDPD, 802.1, and HotSync

You can define priority-based replication of subsets of data. Because data distributed
to multiple locations can lead to conflicts—such as which location now has the
“true” version of the data—automated conflict and resolution is provided. You can
also customize the conflict resolution.

The Mobile Server provides a single platform for publishing, deploying, synchroniz-
ing, and managing mobile applications. The web-based control center can be used
for controlling access to mobile applications. Oracle’s former “Web-to-Go” product
is also part of the Mobile Server and provides centralized wizard-based application
development and deployment.

33

Chapter 2 CHAPTER 2

Oracle Architecture2

This chapter focuses on the concepts and structures at the core of the Oracle data-
base. When you understand the architecture of the Oracle server, you’ll have a
context for understanding the rest of the features of Oracle described in this book.

An Oracle database consists of both physical and logical components. The first sec-
tion of this chapter covers the difference between an Oracle database and an
instance, and subsequent sections describe physical components, the instance, and
the data dictionary.

Databases and Instances
Many Oracle practitioners use the terms instance and database interchangeably. In
fact, an instance and a database are different (but related) entities. This distinction is
important because it provides insight into Oracle’s architecture.

In Oracle, the term database refers to the physical storage of information, and the
term instance refers to the software executing on the server that provides access to
the information in the database. The instance runs on the computer or server; the
database is stored on the disks attached to the server. Figure 2-1 illustrates this
relationship.

The database is physical: it consists of files stored on disks. The instance is logical: it
consists of in-memory structures and processes on the server. For example, Oracle
uses an area of shared memory called the System Global Area (SGA) and a private
memory area for each process called the Program Global Area (PGA). An instance
can be part of one and only one database, although multiple instances can be part of
the same database. Instances are temporal, but databases, with proper maintenance,
last forever.

Users do not directly access the information in an Oracle database. Instead, they pass
requests for information to an Oracle instance.

34 | Chapter 2: Oracle Architecture

The real world provides a useful analogy for instances and databases. An instance
can be thought of as a bridge to the database, which can be thought of as an island.
Traffic flows on and off the island via the bridge. If the bridge is closed, the island
exists but no traffic flow is possible. In Oracle terms, if the instance is up, data can
flow in and out of the database. The physical state of the database is changing. If the
instance is down, users cannot access the database even though it still exists physi-
cally. The database is static: no changes can occur to it. When the instance comes
back into service, the data will be there waiting for it.

Oracle Database Structure
Oracle’s database structures include tablespaces, control files, redo log files, archived
logs, block change tracking files, Flashback logs, and recovery backup (RMAN) files.
This section introduces many of the structures and other components that make up a
complete database.

Tablespaces

All of the data stored within an Oracle database must reside in a tablespace. A
tablespace is a logical structure; you can’t look at the operating system and see a
tablespace. Each tablespace is composed of physical structures called datafiles; each
tablespace must consist of one or more datafiles, and each datafile can belong to only
one tablespace. When creating a table, you can specify the tablespace in which to create
it. Oracle will then find space for it in one of the datafiles that make up the tablespace.

Figure 2-1. An instance and a database

Oracle Instance

Database
Server

Oracle Database

An Oracle instance consists of
processes and memory on the
database server

An Oracle database consists of physical
files on the disk

Databases and Instances | 35

Figure 2-2 shows the relationship of tablespaces to datafiles for a database.

This figure shows two tablespaces within an Oracle database. When you create a
new table in this Oracle database, you may place it in the DATA1 tablespace or the
DATA2 tablespace. It will physically reside in one of the datafiles that make up the
specified tablespace.

Oracle’s default tablespaces for all types of tables are locally managed tablespaces as
of Oracle Database 10g Release 2. Locally managed tablespaces enable creation of
bigfile tablespaces that can leverage 64-bit systems and their ability to manage ultra-
large files.

Oracle9i introduced the concept of Oracle Managed Files (OMFs), which enable
your database to automatically create, name, and delete, where appropriate, all the
files that make up your database. OMFs reduce the maintenance overhead of nam-
ing and tracking the filenames for your database, as well as avoiding the problems
that can result from human errors in performing these tasks. Since Oracle Database
10g, OMFs and bigfile tablespaces combine to make datafiles appear completely
transparent.

Oracle databases can be deployed on up to 64,000 datafiles. Because a bigfile
tablespace can contain a file that is 1,024 times larger than a smallfile tablespace, and
bigfile tablespaces have 32 KB block sizes on 64-bit operating systems, the Oracle
database can grow to up to 8 exabytes in size (an exabyte is equivalent to a million
terabytes).* The bigfile tablespace is designed for use with Oracle’s Automatic Stor-
age Management (ASM), other logical volume managers that support striping, and
RAID.†

Figure 2-2. Tablespaces and datafiles

* The ultimate size of a bigfile depends on the limitations of the underlying operating system.

† RAID stands for “redundant array of inexpensive disks” and is described in Chapter 7.

DATA2

The DATA1
tablespace consists

of one datafile

The DATA2
tablespace consists

of two datafiles

DATA1

data1_01.dbf data2_01.dbf data2_02.dbf

36 | Chapter 2: Oracle Architecture

Files of a database

There are actually three fundamental types of physical files that make up an Oracle
database:

• Control files

• Datafiles

• Redo log files

These three fundamental types represent the physical database itself. Figure 2-3 illus-
trates the three types of files and their interrelationships.

The control file contains locations for other physical files that form the database: the
datafiles and redo log files. It also contains key information about the contents and
state of the database, including:

• The name of the database

• When the database was created

• Names and locations of datafiles and redo log files

• Tablespace information

• Datafile offline ranges

• The log history and current log sequence information

Figure 2-3. The files that make up a database

Control
Files

Identify
Identify

Redo Log Files
Datafiles

Record changes to

Databases and Instances | 37

• Archived log information

• Backup set, pieces, datafile, and redo log information

• Datafile copy information

• Checkpoint information

In addition to providing fundamental information at startup, control files are also
useful when removing a database. Since Oracle Database 10g, the DROP DATA-
BASE command can be used to delete the database files listed in the database control
file as well as the control file itself.

Database Initialization
At Oracle database instance startup, initialization parameters are read to determine
how the database will leverage physical infrastructure and for other key instance
configuration information. Initialization parameters are stored in an instance initial-
ization parameter file, often refered to as INIT.ORA, or, since Oracle9i, in a
repository called the server parameter file (or SPFILE). The number of initialization
parameters that must be specified has been greatly reduced with each Oracle data-
base release. Oracle provides a sample initialization file that can be used at database
startup, and the Database Configuraton Assistant (DCA) prompts you for values that
must be provided on a custom basis (such as database name).

The set of initialization parameters that must be specified in Oracle Database 11g
include:

CONTROL_FILES
The control file locations

DB_NAME
The local database name

DB_DOMAIN
The database domain name (such as us.companyname.com)

LOG_ARCHIVE_DEST
The log archive destination

LOG_ARCHIVE_DEST_STATE
The parameter that enables log archiving

DB_RECOVERY_FILE_DEST
The location of the database flash recovery area (directory, filesystem, or ASM
disk group)

DB_RECOVERY_FILE_DEST_SIZE
The database flash recovery area maximum size in total bytes

DB_BLOCK_SIZE
The database block size in bytes (e.g., 4 KB = 4,096)

38 | Chapter 2: Oracle Architecture

PROCESSES
The maximum number of concurrent database operating system processes

SESSIONS
The maximum number of database sessions

OPEN_CURSORS
The maximum number of database open cursors

SHARED_SERVERS
The minimum number of database shared servers

REMOTE_LISTENER
The remote listener name

COMPATIBLE
The database version you want for compatibility where features affect file for-
mat (e.g., 11.1.0, 10.0.0)

MEMORY_TARGET
The target memory size that is automatically allocated to SGA and instance PGA
components

DDL_LOCK_TIMEOUT
For data definition language (DDL) statements, the time a DDL statement waits
for an exclusive lock (in seconds) before failing

NLS_LANGUAGE
The National Language Support (NLS) language specified for the database

NLS_TERRITORY
The National Language Support territory specified for the database

As an example in the shift toward automation, in Oracle Database 11g, the UNDO_
MANAGEMENT parameter default is now set to automatic undo management.
Undo is used in the rollback of transactions, and for database recovery, read consis-
tency, and flashback features. (Redo records, though, reside in the physical redo
logs; they store changes to data segments and undo segment data blocks, and they
hold a transaction table of the undo segments.) The undo retention period is now
self-tuned by Oracle based on how the undo tablespace is configured.

For your database release, check the documentation regarding optional initialization
parameters as these change from release to release. Some of them are described in the
following sections.

Deploying Physical Components
This section is not a substitute for Oracle’s installation procedures, but it should pro-
vide you with some practical guidance as you plan deployment of an Oracle database.

Deploying Physical Components | 39

Control Files
A database should have at least two control files on different physical disks. Without
a current copy of the control file, you run the risk of losing track of portions of your
database. Losing control files is not necessarily fatal—there are ways to rebuild them.
However, rebuilding control files can be difficult, introduces risk, and can be easily
avoided.

The location of the control files is defined, as previously mentioned, by the
CONTROL_FILES initialization parameter. You can specify multiple copies of con-
trol files by indicating multiple locations in the CONTROL_FILES parameter for the
instance, as illustrated here:

control_files = (/u00/oradata/control.001.dbf,
 /u01/oradata/control.002.dbf,
 /u02/oradata/control.003.dbf)

This parameter tells the instance where to find the control files. Oracle will ensure
that all copies of the control file are kept in sync so all updates to the control files
will occur at the same time. If you do not specify this parameter, Oracle will create a
control file using a default filename or by leveraging Oracle Managed Files (if
enabled).

Many Oracle databases are deployed on some type of redundant disk solution such
as RAID-1 or RAID-5 to avoid data loss when a disk fails. (RAID is covered in more
detail in Chapter 7.) You might conclude that storing the control file on protected
disk storage eliminates the need for maintaining multiple copies of control files and
that losing a disk won’t mean loss of the control file. But there are two reasons why
this is not an appropriate conclusion:

1. If you lose more than one disk in a striped array or mirror-pair, you will lose the
data on those disks. This type of event is statistically rare, but if it does occur,
you could be faced with a damaged or lost control file. As you would have your
hands full recovering from the multiple disk failures, you would likely prefer to
avoid rebuilding control files during the recovery process. Multiplexing your
control files, even when each copy is on redundant disk storage, provides an
additional level of physical security.

2. Redundant disk storage does nothing to protect you from the perpetual threat of
human error. Someone could inadvertently delete or rename a control file, copy
another file over it, or move it. A mirrored disk will faithfully mirror these
actions, and multiplexed control files will leave you with one or more surviving
copies of the control file when one of the copies is damaged or lost.

You do not need to be concerned with additional performance impact when writing
to multiple control files. Updates to the control files are insignificant compared to
other disk I/O that occurs in an Oracle environment.

40 | Chapter 2: Oracle Architecture

Datafiles
Datafiles contain the actual data stored in the database, the tables and indexes that
store data, the data dictionary that maintains information about these data struc-
tures, and the rollback segments used to implement concurrency.

A datafile is composed of Oracle database blocks that, in turn, are composed of oper-
ating system blocks on a disk. Oracle block sizes range from 2 KB to 32 KB. Prior to
Oracle9i, only a single block size could be present in the entire database. In versions
of the database since the introduction of Oracle9i, you still set a default block size for
the database, but you can also have up to five other block sizes in a database (though
only a single block size for each tablespace). Figure 2-4 illustrates the relationship of
Oracle blocks to operating system blocks.

Datafiles belong to only one database and to only one tablespace within that data-
base. Data is read in units of Oracle blocks from the datafiles into memory as
needed, based on the work users are doing. Blocks of data are written from memory
to the datafiles stored on disk as needed to ensure that the database reliably records
changes made by users.

Datafiles are the lowest level of granularity between an Oracle database and the oper-
ating system. When you lay a database out on the I/O subsystem, the smallest piece
you place in any location is a datafile. Tuning the I/O subsystem to improve Oracle
performance typically involves moving datafiles from one set of disks to another.
Automatic Storage Management, included in Oracle databases since Oracle Data-
base 10g, provides automatic striping and eliminates manual effort in this tuning
task.

Figure 2-4. Oracle blocks and operating system blocks

Datafile data_01.dbf consists of Oracle blocks.
Each Oracle block consists of four operating system blocks.

data_01.dbf

Oracle
Blocks

Operating System Blocks

Deploying Physical Components | 41

Datafile structure

The first block of each datafile is called the datafile header. It contains critical infor-
mation used to maintain the overall integrity of the database. One of the most critical
pieces of information in this header is the checkpoint structure. This is a logical time-
stamp that indicates the last point at which changes were written to the datafile. This
timestamp is critical during an Oracle recovery process as the timestamp in the
header determines which redo logs to apply in bringing the datafile to the current
point in time.

Extents and segments

From a physical point of view, a datafile is stored as operating system blocks. From a
logical point of view, datafiles have three intermediate organizational levels: data
blocks, extents, and segments. An extent is a set of data blocks that are contiguous
within an Oracle datafile. A segment is an object that takes up space in an Oracle
database, such as a table or an index that is composed of one or more extents.

Setting the Database Block Size
Prior to Oracle9i, you set the database block size for an Oracle database at the time you
created the database, and you couldn’t change it without re-creating the database.
Since Oracle9i, you have more flexibility, since you can have multiple block sizes in the
same database. In all versions, the default block size for the database is set using the
DB_BLOCK_SIZE instance initialization parameter.

How do you choose an appropriate block size for an Oracle database? Oracle defaults
to a block size based on the operating system used, but understanding the implications
of the block size can help you determine a more appropriate setting for your workload.

The block size is the minimum amount of data that can be read or written at one time.
In online transaction processing (OLTP) systems, a transaction typically involves a rel-
atively small, well-defined set of rows, such as the rows used for placing an order for a
set of products for a specific customer. The access to rows in these types of operations
tends to be through indexes, as opposed to through a scan of the entire table. Because
of this, having smaller blocks (4 KB) might be appropriate. Oracle won’t waste system
resources by transferring larger blocks that contain additional data not required by the
transaction.

Data warehouses workloads can include reading millions of rows and scans of all the
data in a table. For this type of activity, using bigger database blocks enables each block
read to deliver more data to the requesting user. To support these types of operations
best, data warehouses usually have larger blocks, such as 8 KB or 16 KB. Each I/O
operation might take a little longer due to the larger block size, but the reduced number
of operations will end up improving overall performance.

www.allitebooks.com

http://www.allitebooks.org

42 | Chapter 2: Oracle Architecture

When Oracle updates data, it first attempts to update the data in the same data
block. If there is not enough room in the data block for the new information, Oracle
will write the data to a new data block that could be in a different extent.

For more information on segments and extents and how they affect performance,
refer to the section on “Fragmentation and Reorganization” in Chapter 5. This dis-
cussion is especially important if you are running an older release of Oracle. Oracle
Database 10g added a Segment Advisor that greatly simplifies reclaiming unused
space in current database versions.

Redo Log Files
Redo log files contain a “recording” of the changes made to the database as a result
of transactions and internal Oracle activities. Since Oracle usually caches changed
blocks in memory, when instance failure occurs, some changed blocks might not
have been written out to the datafiles. The recording of the changes in the redo logs
can be used to play back the changes lost when the failure occurred, thus protecting
transactional consistency.

These files are sometimes confused with rollback buffers supporting
concurrency and described in Chapter 8. They are not the same!

In addition, redo log files are used for “undo” operations when a ROLLBACK state-
ment is issued. Uncommitted changes to the database are rolled back to the database
image at the last commit.

Suppressing Redo Logging
By default, Oracle logs all changes made to the database. The generation of redo logs
adds a certain amount of overhead. You can suppress redo log generation to speed up
specific operations, but doing so means the operation in question won’t be logged in
the redo logs and you will not be able to recover that operation in the event of a failure.

If you do decide to suppress redo logging for certain operations, you would include the
NOLOGGING keyword in the SQL statement for the operation. (Note that prior to
Oracle8, the keyword was UNRECOVERABLE.) If a failure occurred during the oper-
ation, you would need to repeat the operation. For example, you might build an index
on a table without generating redo information. In the event that a database failure
occurs and the database is recovered, the index will not be re-created because it wasn’t
logged. You’d simply execute the script originally intended to create the index again.

Deploying Physical Components | 43

To simplify operations in the event of a failure, we recommend that you always take
a backup after an unlogged operation if you cannot afford to lose the object created
by the operation or you cannot repeat the operation for some reason. In addition to
using the NOLOGGING keyword in certain commands, you can also mark a table
or an entire tablespace with the NOLOGGING attribute. This will suppress redo
information for all applicable operations on the table or for all tables in the
tablespace.

Multiplexing redo log files

Oracle defines specific terminology to describe how it manages redo logs. Each Ora-
cle instance uses a thread of redo to record the changes it makes to the database. A
thread of redo is composed of redo log groups, which are composed of one or more
redo log members.

Logically, you can think of a redo log group as a single redo log file. However, Ora-
cle allows you to specify multiple copies of a redo log to protect the all-important
integrity of the redo log. By creating multiple copies of each redo log file, you pro-
tect the redo log file from disk failure and other types of disasters.

Figure 2-5 illustrates a thread of redo with groups and members. The figure shows
two members per group, with each redo log mirrored.

Figure 2-5. A thread of redo

member 1 member 2

Group 1

member 1 member 2

Group 2

member 1 member 2

Group 3

Members in a group are identical

=

=

=

44 | Chapter 2: Oracle Architecture

When multiple members are in a redo log group, Oracle maintains multiple copies of
the redo log files. The same arguments used for multiplexing of control files apply
here. However, though you can rebuild the static part of a control file if you lose it,
there is no way to reproduce a lost redo log file. So, be sure to have multiple copies
of the redo file. Simple redundant disk protection is not sufficient for cases in which
human error results in the corruption or deletion of a redo log file.

Oracle writes synchronously to all redo log members. Oracle will wait for confirma-
tion that all copies of the redo log have been successfully updated on disk before the
redo write is considered done. If you put one copy on a fast or lightly loaded disk,
and one copy on a slower or busier disk, your performance will be constrained by the
slower disk. Oracle has to guarantee that all copies of the redo log file have been suc-
cessfully updated to avoid losing data.

Consider what could happen if Oracle were to write multiple redo logs asynchro-
nously, writing to a primary log and then updating the copies later in the background.
If a failure occurs that brings the system down and damages the primary log, Oracle
might not have completed updating all the logs. At this point you have committed
transactions that are lost—the primary log that recorded the changes made by the
transactions is gone, and the copies of the log are not yet up to date with those
changes. To prevent this from occurring, Oracle always waits until all copies of the
redo log have been updated.

How Oracle uses the redo logs

Once Oracle fills one redo log file, it automatically begins to use the next log file.
When the server cycles through all the available redo log files, it returns to the first
one and reuses it. Oracle keeps track of the different redo logs by using a redo log
sequence number. This sequence number is recorded inside the redo log files as they
are used.

To understand the concepts of redo log filenames and redo log sequence numbers,
consider three redo log files called redolog1.log, redolog2.log, and redolog3.log. The
first time Oracle uses them the redo log sequence numbers for each will be 1, 2, and
3, respectively. When Oracle returns to the first redo log—redolog1.log—it will reuse
it and assign it a sequence number of 4. When it moves to redolog2.log, it will initial-
ize that file with a sequence number of 5.

Remember that the operating system uses the redo log file to identify the physical
file, while Oracle uses the redo log file sequence number to determine the order in
which the logs were filled and cycled. Because Oracle automatically reuses redo log
files, the name of the redo log file is not necessarily indicative of its place in the redo
log file sequence.

Figure 2-6 illustrates the filling and cycling of redo logs.

Deploying Physical Components | 45

Naming conventions for redo logs

The operating system names for the various files that make up a database are very
important—at least to humans, who sometimes have to identify these files by their
names. If you are not using Oracle Managed Files, you should use naming conven-
tions that capture the purpose and some critical details about the nature of the file.
Here’s one possible convention for the names of the actual redo log files shown in
Figure 2-6:

redog1m1.log, redog1m2.log, ...

The redo prefix and .log suffixes indicate that this is redo log information. The g1m1
and g1m2 character strings capture the group and member numbers. This convention
is only an example; it’s best to set conventions that you find meaningful and stick to
them.

Archived redo logs

You may be wondering how to avoid losing the critical information in the redo log
when Oracle cycles over a previously used redo log.

Figure 2-6. Cycling redo logs

redog1m1.log redog1m2.log

Group 1

redog2m1.log redog2m2.log

Seq# =1

Seq# =2

Seq# =3
redog3m1.log redog3m2.log

Seq# =4

Group 2

Group 3

Sequence number advances as logs fill and cycle

=

=

=

46 | Chapter 2: Oracle Architecture

There are actually two ways to address this. The first is quite simple: you don’t avoid
losing the information and you suffer the consequences in the event of a failure. You
will lose the history stored in the redo file when it is overwritten. If a failure occurs
that damages the datafiles, you must restore the entire database to the point in time
when the last backup occurred. Since no redo log history exists to reproduce the
changes made since the last backup occurred, you will lose the effects of those
changes. Very few Oracle shops make this choice, because the inability to recover to
the point of failure is unacceptable—it results in lost work.

The second and more practical way to address the issue is to archive the redo logs as
they fill. To understand archiving redo logs, you must first understand that there are
actually two types of redo logs for Oracle:

Online redo logs
The operating system files that Oracle cycles through to log the changes made to
the database

Archived redo logs
Copies of the filled online redo logs made to avoid losing redo data as the online
redo logs are overwritten

An Oracle database can run in one of two modes with respect to archiving redo logs:

NOARCHIVELOG
As the name implies, no redo logs are archived. As Oracle cycles through the
logs, the filled logs are reinitialized and overwritten, which erases the history of
the changes made to the database. This mode essentially has the disadvantage
mentioned above, where a failure could lead to unrecoverable data.

Choosing not to archive redo logs significantly reduces your options for data-
base backups, as we’ll discuss in Chapter 11, and is not advised by Oracle.

ARCHIVELOG
When Oracle rolls over to a new redo log, it archives the previous redo log. To
prevent gaps in the history, a given redo log cannot be reused until it is success-
fully archived. The archived redo logs, plus the online redo logs, provide a
complete history of all changes made to the database. Together, they allow Ora-
cle to recover all committed transactions up to the exact time a failure occurred.
Operating in this mode enables tablespace and datafile backups.

The internal sequence numbers discussed earlier act as the guide for Oracle while it
is using redo logs and archived redo logs to restore a database.

ARCHIVELOG mode and automatic archiving

Starting with Oracle Database 10g, automatic archiving for an Oracle database is
enabled with the following SQL command:

ALTER DATABASE ARCHIVELOG

Deploying Physical Components | 47

If the database is in ARCHIVELOG mode, Oracle marks the redo logs for archiving
as it fills them. The full log files must be archived before they can be reused. The
ALTER DATABASE ARCHIVELOG command will by default turn on automatic
archiving and the archivers are started.

Prior to Oracle Database 10g, log files marked as ready for archiving did not mean
they would be automatically archived. You also needed to set a parameter in the ini-
tialization file with the syntax:

LOG_ARCHIVE_START = TRUE

Setting this parameter started an Oracle process to copy a full redo log to the archive
log destination.

The archive log destination and the format for the archived redo log names are
specified using two additional parameters, LOG_ARCHIVE_DEST and LOG_
ARCHIVE_FORMAT. A setting such as the following:

LOG_ARCHIVE_DEST = C:\ORANT\DATABASE\ARCHIVE

specifies the directory to which Oracle writes the archived redo log files, and:

LOG_ARCHIVE_FORMAT = ORCL%t_%s_%r.arc

defines the format Oracle will use for the archived redo log filenames. In this case,
the filenames will begin with ORCL and will end with .arc. The parameters for the for-
mat wildcards are:

%t
Include thread number as part of the filename

%s
Include log sequence number as part of the filename

%r
Include resetlogs ID as part of the filename

If you want the archived redo log filenames to include the thread number, log
sequence number and resetlogs ID with the numbers zero-padded, capitalize the
parameters and set:

 LOG_ARCHIVE_FORMAT = "ORCL%T_%S_%R.arc"

Since the initialization file is read when an Oracle instance is started, changes to
these parameters do not take effect until an instance is stopped and restarted.
Remember, though, that turning on automatic archiving does not put the database in
ARCHIVELOG mode. Similarly, placing the database in ARCHIVELOG mode does
not enable the automatic archiving process.

You should also make sure that the archive log destination has enough room for the
logs Oracle will automatically write to it. If the archive log file destination is full,
Oracle will hang since it can’t archive additional redo log files.

48 | Chapter 2: Oracle Architecture

Figure 2-7 illustrates redo log use with archiving enabled.

The archived redo logs are critical for database recovery. Just as you can duplex the
online redo logs, you can also specify multiple archive log destinations. Oracle will
copy filled redo logs to specified destinations. You can also specify whether all cop-
ies must succeed or not. The initialization parameters for this functionality are as
follows:

LOG_ARCHIVE_DUPLEX_DEST
Specifies an additional location for redundant redo logs.

LOG_ARCHIVE_MIN_SUCCEED_DEST
Indicates whether the redo log must be successfully written to one or all of the
locations. Valid values are 1 through 10 if multiplexing and 1 or 2 if duplexing.

See your Oracle documentation for the additional parameters and views that enable
and control this functionality.

Instance Memory and Processes
An Oracle instance can be defined as an area of shared memory and a collection of
background processes. The area of shared memory for an instance is called the Sys-
tem Global Area, or SGA. The SGA is not really one large undifferentiated section of
memory—it’s made up of various components that we’ll examine in the next sec-
tion. All the processes of an instance—system processes and user processes—share
the SGA.

Figure 2-7. Cycling redo logs with archiving

Logs are archived as they fill and Oracle switches to a new log

redog1m1.log redog1m2.log

Group 1

redog2m1.log redog2m2.log

Seq#=1

Seq#=2

Seq#=3
redog3m1.log redog3m2.log

Seq#=4

Group 2

Group 3

Archived Redo Logs

ORCL0000000001.ARC

ORCL0000000002.ARC

ORCL0000000003.ARC

=

=

=

Instance Memory and Processes | 49

Prior to Oracle9i, the size of the SGA was set when the Oracle instance was started.
The only way to change the size of the SGA or any of its components was to change
the initialization parameter and then stop and restart the instance. Since Oracle9i,
you can also change the size of the SGA or its components while the Oracle instance
is running. Oracle9i also introduced the concept of the granule, which is the smallest
amount of memory that you can add to or subtract from the SGA.

Oracle Database 10g introduced Automatic Shared Memory Management, while
Oracle Database 11g added Automatic Memory Management for the SGA and PGA
instance components. Whenever the MEMORY_TARGET (new to Oracle Database
11g) or SGA_TARGET initialization parameter is set, the database automatically dis-
tributes the memory among various SGA components providing optimal memory
management. The shared memory components automatically sized include the
shared pool (manually set using SHARED_POOL_SIZE), the large pool (LARGE_
POOL_SIZE), the Java pool (JAVA_POOL_SIZE), the buffer cache (DB_CACHE_
SIZE), and the streams pool (STREAMS_POOL_SIZE). Automatic memory
management initialization parameters can be set through Oracle Enterprise Manager.

The background processes interact with the operating system and each other to man-
age the memory structures for the instance. These processes also manage the actual
database on disk and perform general housekeeping for the instance.

Figure 2-8 illustrates the memory structures and background processes discussed in
the following section.

Figure 2-8. An Oracle instance

Database Buffer Cache Shared Pool
Redo Log

Buffer

SGA

SMON PMON RECO

DBWR CKPT LGWR ARCH

Datafiles Control Files Redo Logs

50 | Chapter 2: Oracle Architecture

Additional background processes may exist when you use certain other features of
the database: for example, shared servers (formerly the Multi-Threaded Server or
MTS prior to Oracle9i), or job queues and replication.

Memory Structures for an Instance
As shown in Figure 2-8, the System Global Area is composed of multiple areas.
These include a database buffer cache, a shared pool, and a redo log buffer as shown
in the figure, and also possibly a Java pool, a large pool, and a Streams pool. The fol-
lowing sections describe these areas of the SGA. For a more detailed discussion of
performance and the SGA, see “How Oracle Uses the System Global Area” in
Chapter 7.

Database buffer cache

The database buffer cache holds blocks of data retrieved from the database. This
buffer between the users’ requests and the actual datafiles improves the performance
of the Oracle database. If a piece of data can be found in the buffer cache (for exam-
ple, as the result of a recent query), you can retrieve it from memory without the
overhead of having to go to disk. Oracle manages the cache using a least recently used
(LRU) algorithm. If a user requests data that has been recently used, the data is more
likely to be in the database buffer cache; data in the cache can be delivered immedi-
ately without a disk-read operation being executed.

When a user wants to read a block that is not in the cache, the block must be read
and loaded into the cache. When a user makes changes to a block, those changes are
made to the block in the cache. At some later time, those changes will be written to
the datafile in which the block resides. This avoids making users wait while Oracle
writes their changed blocks to disk.

This notion of waiting to perform I/O until absolutely necessary is common through-
out Oracle. Disks are the slowest component of a computer system, so the less I/O
performed, the faster the system runs. By deferring noncritical I/O operations instead
of performing them immediately, an Oracle database can deliver better performance.

Since Oracle8, the database buffer cache can be configured with buffer pools of the
following types:

DEFAULT
The standard Oracle database buffer cache. All objects use this cache unless oth-
erwise indicated.

KEEP
For frequently used objects you wish to cache.

RECYCLE
For objects you’re less likely to access again.

Instance Memory and Processes | 51

Both the KEEP and RECYCLE buffer pools remove their objects from consideration
by the LRU algorithm.

You can mark a table or index for caching in a specific buffer pool. This helps to
keep more desirable objects in the cache and avoids the “churn” of all objects fight-
ing for space in one central cache. Of course, to use these features properly you must
be aware of the access patterns for the various objects used by your application.

Oracle Database 10g simplifed management of buffer cache size by introducing a new
dynamic parameter, DB_CACHE_SIZE. This parameter can be used to specify cache
memory size and replaced the DB_BLOCK_BUFFERS parameter present in previous
Oracle releases. DB_CACHE_SIZE is automatically sized if MEMORY_TARGET or
SGA_TARGET is set. Other initialization parameters include DB_KEEP_CACHE_
SIZE and DB_RECYCLE_CACHE_SIZE and these must be manually sized if used.

Shared pool

The shared pool caches various constructs that can be shared among users. For
example, SQL queries and query fragments issued by users and results are cached so
they can be reused if the same statement is submitted again. PL/SQL functions are
also loaded into the shared pool for execution and the functions and results are
cached, again using an LRU algorithm. As of Oracle Database 11g, a PL/SQL func-
tion can be marked in such a way that its result will be cached to allow lookup rather
than recalculation when it is called again using the same parameters. The shared
pool is also used for caching information from the Oracle data dictionary, which is
the metadata that describes the structure and content of the database itself.

You can specify a SHARED_POOL_SIZE initialization parameter, or it will be auto-
matically sized if MEMORY_TARGET or SGA_TARGET is specified. Note that
prior to Oracle Database 10g, “out of memory” errors were possible if the shared
pool was undersized, but current Oracle database releases now can leverage auto-
matic shared memory tuning.

Redo log buffer

The redo log buffer caches redo information until it is written to the physical redo
log files stored on a disk. This buffer also improves performance. Oracle caches the
redo until it can be written to a disk at a more optimal time, which avoids the over-
head of constantly writing the redo logs to disk.

Other pools in the SGA

The SGA includes several other pools:

Large pool
Provides memory allocation for various I/O server processes, backup, and recovery,
and provides session memory where shared servers and Oracle XA for transaction
processing are used.

www.allitebooks.com

http://www.allitebooks.org

52 | Chapter 2: Oracle Architecture

Java pool
Provides memory allocation for Java objects and Java execution, including data
in the Java Virtual Machine in the database.

Streams pool
Provides memory allocation used to buffer Oracle Streams queued messages in
the SGA instead of in database tables and provides memory for capture and
apply.

Dynamic initialization parameters available for these pools include LARGE_POOL_
SIZE, JAVA_POOL_SIZE, and STREAMS_POOL_SIZE. These are automatically set
if MEMORY_TARGET or SGA_TARGET is specified.

Automatic PGA management

Oracle automatically manages the memory allocated to an instance Program Global
Area (PGA). The PGA consists of session memory and a private SQL area. The
memory amount can be controlled by setting the PGA_AGGREGATE_TARGET ini-
tialization parameter. Automatic PGA management, available since Oracle Database
10g, greatly simplified management of SQL work areas and eliminated the need to
set several different initialization parameters that previously existed. As of Oracle
Database 11g, PGA memory allocation is automatically tuned along with the SGA
memory allocations by setting MEMORY_TARGET.

Background Processes for an Instance
The most common background processes are shown in Figure 2-8 and vary from
Oracle release to release. Among the background processes in Oracle Database 11g
are the following:

Database Writer (DBWn)
Writes database blocks from the database buffer cache in the SGA to the data-
files on disk. An Oracle instance can have up to 20 DBW processes to handle the
I/O load to multiple datafiles—hence the notation DBWn. Most instances run
one DBW. DBW writes blocks out of the cache for two main reasons:

• If Oracle needs to perform a checkpoint (i.e., to update the blocks of the
datafiles so that they “catch up” to the redo logs). Oracle writes the redo for
a transaction when it’s committed, and later writes the actual blocks. Peri-
odically, Oracle performs a checkpoint to bring the datafile contents in line
with the redo that was written out for the committed transactions.

• If Oracle needs to read blocks requested by users into the cache and there is
no free space in the buffer cache. The blocks written out are the least
recently used blocks. Writing blocks in this order minimizes the perfor-
mance impact of losing them from the buffer cache.

Instance Memory and Processes | 53

Log Writer (LGWR)
Writes the redo information from the log buffer in the SGA to all copies of the
current redo log file on disk. As transactions proceed, the associated redo infor-
mation is stored in the redo log buffer in the SGA. When a transaction is
committed, Oracle makes the redo information permanent by invoking the Log
Writer to write it to disk.

System Monitor (SMON)
Maintains overall health and safety for an Oracle instance. SMON performs
crash recovery when the instance is started after a failure and coordinates and
performs recovery for a failed instance when you have more than one instance
accessing the same database, as with Real Application Clusters. SMON also
cleans up adjacent pieces of free space in the datafiles by merging them into one
piece and gets rid of space used for sorting rows when that space is no longer
needed.

Process Monitor (PMON)
Watches over the user processes that access the database. If a user process termi-
nates abnormally, PMON is responsible for cleaning up any of the resources left
behind (such as memory) and for releasing any locks held by the failed process.

Archiver (ARCn)
Reads the redo log files once Oracle has filled them and writes a copy of the used
redo log files to the specified archive log destination(s).

Up to 10 Archiver processes are possible—hence the notation ARCn. LGWR
will start additional Archivers as needed, based on the load, up to a limit speci-
fied by the initialization parameter LOG_ARCHIVE_MAX_PROCESSES. By
default, this initialization parameter has a default value of 2 and is rarely
changed.

Checkpoint (CKPT)
Updates datafile headers whenever a checkpoint is performed.

Recover (RECO)
Automatically cleans up failed or suspended distributed transactions.

Dispatcher
Optional background processes used when shared server configurations are
deployed.

Global Cache Service (LMS)
Manages resources for Real Application Clusters and interinstance resource
control.

Job Queue
Provides a scheduler service used to schedule user PL/SQL statements or proce-
dures in batch.

54 | Chapter 2: Oracle Architecture

Queue Monitor (QMNn)
Monitors Oracle Streams message queues with up to 10 monitoring processes
supported.

Automatic Storage Management (ASM) processes
RBAL coordinates rebalancing of activities for disk groups. ORBn performs the
actual rebalancing. ASMB provides communication between the database and
the ASM instance.

The Data Dictionary
Each Oracle database includes a set of metadata that describes the data structure
including table definitions and integrity constraints. The tables and views that hold
this metadata are referred to as the Oracle data dictionary. All of the components
discussed in this chapter have corresponding system tables and views in the data dic-
tionary that fully describe the characteristics of the component. You can query these
tables and views using standard SQL statements. Table 2-1 shows where you can
find some of the information available about each of the components in the data
dictionary.

The SYSTEM tablespace always contains the data dictionary tables. Data dictionary
tables that are preceded by the V$ or GV$ prefixes are dynamic tables, which are
continually updated to reflect the current state of the Oracle database. Static data
dictionary tables can have a prefix such as DBA_, ALL_, or USER_ to indicate the
scope of the objects listed in the view.

Processes or Threads?
With all this talk about processes, you may be wondering whether Oracle actually uses
threads or processes in the underlying operating system to implement these services.

For simplicity, throughout this book we use the term process generically to indicate a
function that Oracle performs, such as DBW or LGWR. For Oracle on Windows, each
“Oracle process” is a thread within a process. For Oracle on Unix, the “processes” are
more commonly actual operating system processes, not threads. Thus, on Unix DBW
and LGWR are specific operating system processes, while on Windows they are
threads within a single process.

There are some exceptions, however, and how the database is implemented at this level
of detail can be both database version and operating system dependent. In the final
analysis, Oracle makes this issue largely unimportant to users and administrators, as
database management using Enterprise Manager is consistent regardless of platform.

The Data Dictionary | 55

Table 2-1. Partial list of database components and their related data dictionary views

Component Data dictionary tables and views

Database

Shared server

V$DATABASE, V$VERSION, V$INSTANCE

V$QUEUE, V$DISPATCHER, V$SHARED_SERVER

Connection pooling DBA_CPOOL_INFO, V$CPOOL_STAT, V$CPOOL_CC_STATS

Tablespaces USER_FREE_SPACE, DBA_FREE_SPACE, V$TEMPFILE, DBA_USERS, DBA_TS_QUOTAS

Control files V$CONTROLFILE, V$PARAMETER, V$CONTROLFILE_RECORD_SECTION

Datafiles V$DATAFILE, V$DATAFILE_HEADER, DBA_DATA_FILES, DBA_EXTENTS, USER_EXTENTS

Segments DBA_SEGMENTS, USER_SEGMENTS

Extents DBA_EXTENTS, USER_EXTENTS

Redo logs V$THREAD, V$LOG, V$LOGFILE, V$LOG_HISTORY

Undo V$UNDOSTAT, V$ROLLSTAT, V$TRANSACTION

Archiving status V$DATABASE, V$LOG, V$ARCHIVED_LOG, V$ARCHIVE_DEST

Database instance V$INSTANCE, V$PARAMETER, V$SYSTEM_PARAMETER

Memory structure VSGA, VSGASTAT, V$SGAINFO, V$SGA_DYNAMIC_COMPONENTS, V$SGA_DYNAMIC_FREE_
MEMORY, VSGA_RESIZE_OPS, VSGA_RESIZE_CURRENT_OPS, V$MEMORY_TARGET_
ADVICE, VSGA_TARGET_ADVICE, VPGA_TARGET_ADVICE

Work area memory V$PGASTAT, V$SYSSTAT

Processes V$PROCESS, V$BGPROCESS, V$SESSION

Alerting DBA_THRESHOLDS, DBA_OUTSTANDING_ALERTS, DBA_ALERT_HISTORY, V$ALERT_TYPES,
V$METRIC

Performance monitoring V$LOCK, DBA_LOCK, V$SESSION_WAIT, V$SQLAREA, V$LATCH

RMAN recovery V$RECOVER_FILE

User passwords V$PWFILE_USERS

Tables DBA_TABLES, ALL_TABLES, USER_TABLES

Indexes DBA_INDEXES, ALL_INDEXES, USER_INDEXES

Data dictionary DBA_OBJECTS, ALL_OBJECTS, USER_OBJECTS

56

Chapter 3CHAPTER 3

Installing and Running Oracle 3

If you’ve been reading this book sequentially, you should understand the basics of
the Oracle database architecture by now. This chapter begins with a description of
how to install a database and get it up and running. (If you’ve already installed your
Oracle database software, you can skim through this first section.) We’ll describe
how to create an actual database and how to configure the network software needed
to run Oracle. Finally, we’ll discuss how users access databases and begin a discus-
sion of how to manage databases—a topic that will be continued in subsequent
chapters.

Installing Oracle
Prior to Oracle8i, the Oracle installer came in both character and GUI versions for
Unix. The Unix GUI ran in Motif using the X Windows system. Windows NT came
with a GUI version only. Since Oracle8i, the installer has been Java-based.

The Oracle installer is one of the first places in which you can see the benefits of the
portability of Java; the installer looks and functions the same way across all operat-
ing systems. For some time now, installing Oracle has been quite simple, requiring
only a few mouse clicks and answers to some questions about options and features.

Oracle made great strides in further simplifying installation with Oracle Database
10g. Both that install and the installation of Oracle Database 11g can be accom-
plished in less than 20 minutes. Figure 3-1 shows a version of the launch screen of
the installer for Oracle Database 10g.

The current version of the Oracle Universal Installer begins the process by checking
the target environment to make sure there are enough resources for the Oracle data-
base. If the target is a bit light, you will be informed with a warning and given the
option to continue.

Installing Oracle | 57

As part of the installation process, the Installer also runs the Net Configuration
Assistant and the Database Configuration Assistant so that you will end up with a
working Oracle instance when the process is complete.

If, for some reason, the installation fails, the commands that did not succeed are
listed in a log file, which helps you understand where the problem may lie and gives
you a handy set of commands you can run yourself once the problem is fixed.

Although the installation process is now the same for all platforms, there are still par-
ticulars about the installation of Oracle that relate to specific platforms. Each release
of the Oracle Database Server software is shipped with its own set of documenta-
tion. Included in each release are an installation guide, release notes (which include
installation information added after the installation guide was published), and a “get-
ting started” book. You should read all of these documents prior to starting the
installation process, since each of them contains invaluable information about the
specifics of the installation. You will need to consider details such as where to estab-
lish the Oracle Home directory and where database files will reside. These issues are
covered in detail in the documentation. In addition to the hardcopy documentation,
online documentation is shipped on the database server media, and this provides
additional information regarding the database and related products.

Figure 3-1. Oracle Universal Installer

58 | Chapter 3: Installing and Running Oracle

You’ll typically find the installation guide in the server software CD case. The instal-
lation guide includes system requirements (memory and disk), preinstallation tasks,
directions for running the installation, and notes regarding migration of earlier Ora-
cle databases to the current release. You should remember that complete installation
of the software includes not only loading the software, but also configuring and start-
ing key services.

One of the more important decisions you needed to make before actually installing
Oracle in older releases concerned the directory structure and naming conventions you
would follow for the files that make up a database. Clear, consistent, and well-planned
conventions were crucial for minimizing human errors in system and database admin-
istration. Today, this naming is largely automated during the installation process.
Some of the more important database naming that takes place includes the following:

• Disk or mount point names

• Directory structures for Oracle software and database files

• Database filenames: control files, database files, and redo log files

The Optimal Flexible Architecture (OFA), described in the next section, became the
basis for naming conventions for all of these files.

Optimal Flexible Architecture
Oracle consultants working at large Oracle sites created (out of necessity) a compre-
hensive set of standards for database directory structures and filenames prior to
Oracle’s introduction of more automated installation procedures. This set of stan-
dards is called An Optimal Flexible Architecture for a Growing Oracle Database or, as
it is lovingly known in the Oracle community, the OFA. For example, the OFA pro-
vides a clear set of standards for handling multiple databases and multiple versions
of Oracle if deployed on the same machine. It includes recommendations for mount
points, directory structures, filenames, and scripting techniques. Anyone who knows
the OFA can navigate an Oracle environment to quickly find the software and files
used for the database and the instance. This standardization increased productivity
and avoided errors.

Since Oracle7 releases, the OFA standards are embedded in the Oracle installer. Sys-
tem administrators and database administrators working with Oracle will find
understanding the OFA worthwhile, even if your Oracle system is already installed.
OFA documentation is included in the Oracle installation guide.

Supporting Multiple Oracle Versions on a Machine
You can install and run multiple versions of Oracle on a single-server machine. All
Oracle products use a directory referred to by the environment or system variable
ORACLE_HOME to find the base directory for the software they will use. Because of

Creating a Database | 59

this, you can run multiple versions of Oracle software on the same server, each with
a different ORACLE_HOME variable defined. Whenever a piece of software accesses
a particular version of Oracle, the software simply uses the proper setting for the
ORACLE_HOME environment variable.

Oracle supports multiple ORACLE_HOME variables on Unix and Windows sys-
tems by using different directories. The OFA provides clear and excellent standards
for this type of implementation.

Upgrading an Oracle Database
Oracle Database 10g added two additional features that apply to upgrading an exist-
ing Oracle database: the Database Upgrade Assistant and support for rolling
upgrades.

If you want to upgrade a single instance, you can use the Database Upgrade Assistant,
which can be started from the Oracle Universal Installer. As of Oracle Database 11g,
you can upgrade from the free version of Oracle, Oracle XE, to a single instance with
the Database Upgrade Assistant.

One of the longstanding problems with upgrades has been the requirement to bring
down the database, upgrade the database software, and then restart the database.
This necessary downtime can impinge on your operational requirements. If you are
using a Real Application Clusters implementation since Oracle Database 10g, you
can perform a rolling upgrade. A rolling upgrade allows you to bring down some of
the nodes of the cluster, upgrade their software, and then bring them back online as
part of the cluster. You can then repeat this procedure with the other nodes. The end
result is that you can achieve a complete upgrade of your Oracle database software
without having to bring down the database.

Creating a Database
As we noted in Chapter 2, Oracle might be installed for a variety of workloads. You
should take a two-step approach for any new databases you create. First, understand the
purpose of the database, and then create the database with the appropriate parameters.

Planning the Database
As with installing the Oracle software, you should spend some time learning the pur-
pose of an Oracle database before you create the database itself. Consider what the
database will be used for and how much data it will contain. You should understand
the underlying hardware that you’ll use—the number and type of CPUs, the amount
of memory, the number of disks, the controllers for the disks, and so on. Because the
database is stored on the disks, many tuning problems can be avoided with proper
capacity and I/O subsystem planning.

60 | Chapter 3: Installing and Running Oracle

Planning your database and the supporting hardware requires insights into the scale
or size of the workload and the type of work the system will perform. Some of the
considerations that will affect your database design and hardware configuration
include the following:

How many users will the database have?
How many users will connect simultaneously and how many will concurrently
perform transactions or execute queries?

Is the database supporting OLTP applications or data warehousing?
This distinction leads to different types and volumes of activity on the database
server. For example, online transaction processing (OLTP) systems usually have
a larger number of users performing smaller transactions, while data ware-
houses usually have a smaller number of users performing larger queries.

What are the expected size and number of database objects?
How large will these objects be initially and what growth rates do you expect?

What are the access patterns for the various database objects?
Some objects will be more popular than others. Understanding the volume and
type of activity in the database is critical to planning and tuning your database.
Some people employ a so-called CRUD matrix that contains Create, Read,
Update, and Delete indicators, or even estimates for how many operations will
be performed for each key object used by a business transaction. These esti-
mates may be per minute, per hour, per day, or for whatever time period makes
sense in the context of your system. For example, the CRUD matrix for a simple
employee update transaction might be as shown in Table 3-1, with the check-
marks indicating that each transaction performs the operation against the object
shown.

How much hardware do I have now, and how much will I add as the database grows?
Disk drives tend to get cheaper and cheaper. Suppose you’re planning a data-
base of 100 GB that you expect to grow to 300 GB over the next two years. You
may have all the disk space available to plan for the 300 GB target, but it’s more
likely that you’ll buy a smaller amount to get started and add disks as the data-
base grows. It’s important that you plan the initial layout with the expected
growth in mind.

Prior to Oracle9i, running out of tablespace in the middle of a batch operation
meant that the entire operation had to be rolled back. Oracle9i introduced the

Table 3-1. Access patterns for database objects

Object Create Read Update Delete

EMP � �

DEPT �

SALARY � �

Creating a Database | 61

concept of resumable space allocation. When an operation encounters an out-
of-space condition, if the resumable statement option has been enabled for the
session, the operation is suspended for a specific length of time, which allows
the operator to correct the out-of-space condition. You even have the option to
create an AFTER SUSPEND trigger to fire when an operation has been
suspended.

With Automatic Storage Management (ASM), introduced in Oracle Database
10g, you can add additional disk space or take away disks without interrupting
database service. Although you should still carefully estimate storage require-
ments, the penalty for an incorrect judgment, in terms of database downtime, is
significantly reduced with ASM.

What are the availability requirements?
What elements of redundancy, such as additional disk drives, do you need to
provide the required availability? ASM also provides automatic mirroring for
data, which can help to provide data resiliency.

What are my performance requirements?
What response times do your users expect, and how much of that time can you give
them? Will you measure performance in terms of average response time, maximum
response time, response time at peak load, total throughput, or average load?

What are my security requirements?
Will the application, the operating system, or the Oracle database (or some com-
bination of these) enforce security?

The Value of Estimating
Even if you are unsure of things such as sizing and usage details, take your best guess
as to initial values and growth rates and document these estimates. As the database
evolves, you can compare your initial estimates with emerging information to react
and plan more effectively. For example, suppose you estimate that a certain table will
be 5 GB in size initially and will grow at 3 GB per year, but when you are up and run-
ning you discover that the table is actually 3 GB, and six months into production you
discover that it has grown to 8 GB. You can now revise your plans to reflect the
higher growth rate and thereby avoid space problems. Comparing production mea-
sures of database size, growth, and usage patterns with your initial estimates will
provide valuable insights to help you avoid problems as you move forward. In this
way, documented guesses at an early stage are useful later on.

The same is true for key requirements such as availability and performance. If the
exact requirements are not clear, make some assumptions and document them.
These core requirements will heavily influence the decisions you make regarding
redundancy and capacity. As the system evolves and these requirements become
clearer, the history of these key decision criteria will be crucial in understanding the
choices that you made and will make in the future.

62 | Chapter 3: Installing and Running Oracle

The Automatic Workload Repository (AWR), first available in Oracle Database 10g,
maintains a history of workload and performance measurements, which are used by
the Automatic Database Diagnostic Monitor (ADDM) to spot performance anoma-
lies. You can also use AWR to track ongoing changes in workload.

Tools for Creating Databases
There are two basic ways to create an Oracle database:

• Use the GUI Oracle Database Configuration Assistant.

• Run character-mode scripts.

Oracle ships with a GUI utility called the Oracle Database Configuration Assistant,
which can be run standalone or from the Oracle Installer. It is written in Java and
therefore provides the same look and feel across platforms. The Assistant is a quick
and easy way to create, modify, or delete a database. It allows you to create a typical
preconfigured database (with minimal input required) or a custom database (which
involves making some choices and answering additional questions). The Database
Configuration Assistant is typically initially accessed as part of a standard installer
session. The Assistant is shown in Figure 3-2.

Figure 3-2. Oracle Database Configuration Assistant

Configuring Oracle Net | 63

If you choose to create a database, you can then select the type of database you want
to create, as shown in Figure 3-3 for Oracle Database 11g. The different types of
databases will be created with different default configuration values.

The alternative method for creating a database is to create or edit an existing SQL
script that executes the various required commands. Most Oracle DBAs have a pre-
ferred script that they edit as needed. In Oracle7 and Oracle8, you executed the
script using a character-mode utility called Server Manager; since Oracle8i, you
could use SQL*Plus. The Oracle software CD-ROM also includes a sample script
called BUILD_DB.SQL, described in the Oracle documentation. Today, most users
choose to create the database with the standard installer interface.

Configuring Oracle Net
Oracle Net (known as Net8 for Oracle8 and Oracle8i and SQL*Net prior to Oracle8)
is a layer of software that allows different physical machines to communicate for the
purpose of accessing an Oracle database.

Figure 3-3. Selecting a database to create

64 | Chapter 3: Installing and Running Oracle

The name Net8 was changed to Oracle Net in Oracle9i, and we will
generally use “Oracle Net” in this chapter as a neutral term to apply to
all versions of Oracle networking. The term “Oracle Net Services” in
Oracle refers to all the components of Oracle Net, including dispatch-
ers, listeners, and shared servers; these are explained later in this chapter.

A version of Oracle Net runs on the client machine and on the database server, and
allows clients and servers to communicate over a network using virtually any popu-
lar network protocol. Oracle Net can also perform network protocol interchanges.
For example, it allows clients that are speaking LU 6.2 to interact with database serv-
ers that are speaking TCP/IP.

Oracle Net also provides location transparency—that is, the client application does
not need to know the server’s physical location. The Oracle Net layer handles the
communications, which means that you can move the database to another machine
and simply update the Oracle Net configuration details accordingly. The client appli-
cations will still be able to reach the database, and no application changes will be
required.

Oracle Net supports the notion of service names, or aliases. Clients provide a service
name or Oracle Net alias to specify which database they want to reach without hav-
ing to identify the actual machine or instance for the database. Oracle Net looks up
the actual machine and the Oracle instance, using the provided service name, and
transparently routes the client to the appropriate database.

Resolving Oracle Net Service Names
The following Oracle Net configuration options resolve the service name the client
specifies into the host and instance names needed to reach an Oracle database:

Local name resolution
For local name resolution, you install a file called TNSNAMES.ORA on each cli-
ent machine that contains entries that provide the host and Oracle instance for
each Oracle Net alias. You must maintain this file on the client machines if any
changes are made to the underlying database locations. Your network topology
is almost certain to change over time, so use of this option can lead to an
increased maintenance load. If you are using Oracle Internet Directory,
described later in this section, you do not need a TNSNAMES.ORA file.

Oracle Names service
Oracle Names was supported in earlier Oracle releases, providing a way to elimi-
nate the need for a TNSNAMES.ORA file on each client. That was the good part.
The bad part was that Oracle Names was a proprietary solution. Since Oracle
Internet Directory is based on standards and provides this functionality, Oracle
declared Oracle Names obsolete after the Oracle9i release.

Configuring Oracle Net | 65

Oracle Internet Directory
The need for a centralized naming service extends far beyond the Oracle
environment. In fact, there is a well-defined standard for accessing this type of
information, the Lightweight Directory Access Protocol (LDAP). As of the Ora-
cle Database 11g release, Oracle Internet Directory (OID) is a part of Fusion
Middleware, which is described in Chapter 15. OID is an LDAP-enabled direc-
tory that can fulfill the same role as the previously available Oracle Names
service. The OID is also used for a variety of other purposes, such as enabling
single sign-on for the Oracle Application Server Portal product, also described in
Chapter 15. Since Oracle Database 10g, you can export directory entries to cre-
ate a local TNSNAMES.ORA file; this file may be used for clients not using the
directory or if the directory is unavailable.

Host naming
Clients can simply use the name of the host on which the instance runs. This is
valid for TCP/IP networks with a mechanism in place for resolving the hostname
into an IP address. For example, the Domain Name Service (DNS) translates a
hostname into an IP address, much as Oracle Names translates service names.
Since Oracle Database 10g, you can use this method with either a host name,
domain-qualified if appropriate, or a TCP/IP address, but the connection will
not support advanced services such as connection pooling.

Third-party naming services
Oracle Net can interface with external or third-party naming and authentication
services such as Kerberos or Radius. Use of such services may require Oracle
Advanced Security (known as the Advanced Networking Option prior to
Oracle8i).

These name resolution options are not mutually exclusive. For example, you can use
Oracle Internet Directory and local name resolution (TNSNAMES.ORA files)
together. In this case, you specify the order Oracle should use in resolving names in
the SQLNET.ORA file (for example, check OID first, and if the service name isn’t
resolved, check the local TNSNAMES.ORA file). This is useful for cases in which
there are corporate database services specific to certain clients. You would use OID
for the standard corporate database services, such as email, and then use
TNSNAMES.ORA entries for the client-specific database services, such as a particu-
lar development database.

You also have the option to connect directly to an Oracle database with what Oracle
refers to as the easy connect naming method. This method uses the host name or
TCP/IP identifier for the Oracle server machine and the name of the Oracle database
instance. The method is limited to use with TCP/IP networks, and is recommended
only for fairly small installations where the host identifier is rarely changed.

66 | Chapter 3: Installing and Running Oracle

Oracle Net Manager
In Oracle8, Oracle provided a GUI utility called the Net8 Assistant used to create the
various configuration files required for Net8; this utility was renamed the Oracle Net
Manager with the Oracle9i release.

Like the Database Configuration Assistant, the Oracle Net Manager is written in
Java, provides the same look and feel across platforms, and is typically first accessed
from the installer. The Oracle Net configuration files have a very specific syntax with
multiple levels of nested brackets. Using the Oracle Net Manager allows you to avoid
the errors that are common to hand-coded files. This utility, which automates the
configuration of various Oracle Net components, is shown in Figure 3-4 as it appears
in Oracle Database 11g.

Figure 3-4. Oracle Net Manager

Debugging Network Problems
If you’re having a problem with your network, one of the first steps toward debugging
the problem is to check that the Oracle Net files were generated, not hand-coded. If
you’re in doubt, back up the current configuration files and use the Oracle Net Man-
ager to regenerate them. In fact, when Oracle Support assists customers with Oracle
Net problems, one of the first questions they ask is whether or not the files were
handcoded.

Configuring Oracle Net | 67

Auto-Discovery and Agents
Beginning with Oracle 7.3, Oracle provided auto-discovery features that allowed it to
find new databases automatically. Support for auto-discovery increased and
improved with each Oracle release since then. Since Oracle8i, the Universal Installer
and Oracle Net Manager work together smoothly to automatically configure your
Oracle Net network.

A key piece of the Oracle network that enables auto-discovery is the Oracle Intelli-
gent Agent. The agent is a piece of software that runs on the machine with your
Oracle database(s). It acts as an agent for other functions that need to find and work
with the database on the machine. For example, the agent knows about the various
Oracle instances on the machine and handles critical management functions, such as
monitoring the database for certain events and executing jobs. The agent provides a
central point for auto-discovery: Oracle Net discovers instances and databases by
interrogating the agent. We’ll examine the general use of agents and their role in
managing Oracle in Chapter 5.

Oracle Net Configuration Files
Oracle Net requires several configuration files. The default location for the files used
to configure an Oracle Net network are as follows:

• On Windows, ORACLE_HOME\net80\admin for Oracle8 and ORACLE_
HOME\network\ admin for Oracle8i and more current releases

• On Unix, ORACLE_HOME/network/admin

You can place these files in another location, in which case you must set an environ-
ment or system variable called TNS_ADMIN to the nondefault location. Oracle then
uses TNS_ADMIN to locate the files. The vast majority of systems are configured
using the default location.

The files that form a simple Oracle Net configuration are as follows:

LISTENER.ORA
Contains details for configuring the Oracle Net Listener, such as which instances
or services the Listener is servicing. As the name implies, the Listener “listens”
for incoming connection requests from clients that want to access the Oracle data-
base over the network. For details about the mechanics of the Listener’s function,
see the later section “Oracle Net and Establishing Network Connections.”

TNSNAMES.ORA
Decodes a service name into a specific machine address and Oracle instance for
the connection request. (If you’re using Oracle Names or OID, as described
earlier, you don’t need to use the TNSNAMES.ORA file as part of your configu-
ration.) This file is key to Oracle Net’s location transparency. If you move a
database from one machine to another, you can simply update the TNSNAMES.

68 | Chapter 3: Installing and Running Oracle

ORA files on the various clients to reflect the new machine address for the exist-
ing service name. For example, suppose that clients reach the database using a
service name of SALES. The TNSNAMES.ORA file has an entry for the service
name SALES that decodes to a machine named HOST1 and an Oracle instance
called PROD. If the Oracle database used for the SALES application is moved to
a machine called HOST2, the TNSNAMES.ORA entry is updated to use the
machine name HOST2. Once the TNSNAMES.ORA files are updated, client
connection requests will be routed transparently to the new machine with no
application changes required.

SQLNET.ORA
Provides important defaults and miscellaneous configuration details. For exam-
ple, SQLNET.ORA contains the default domain name for your network.

LDAP.ORA
For Oracle8i and later releases, the LDAP.ORA file contains the configuration
information needed to use an LDAP directory, such as the Oracle Internet Direc-
tory. This information includes the location of the LDAP directory server and the
default administrative context for the server. This is no longer required for an
LDAP server that is registered with the Domain Name Server (DNS) since Ora-
cle Database 10g.

As mentioned in Chapter 2, Oracle9i added a server parameter file, named SPFILE,
which provides storage for system parameters you have changed while your Oracle9i
instance is running, using the ALTER SYSTEM command. With the SPFILE, these
new parameter values are preserved and used the next time you restart your Oracle
instance. You can indicate whether a particular change to a system parameter is
intended to be persistent (in which case it will be stored in the SPFILE) or temporary.

The SPFILE is a binary file that is kept on the server machine. By default, an Oracle9i
or later instance will look for the SPFILE at startup and then for an instance of the
INIT.ORA file.

The SPFILE can also be kept on a shared disk, so that it can be used to initialize mul-
tiple instances in an Oracle Real Application Clusters configuration.

Starting Up the Database
Starting a database is quite simple—on Windows you simply start the Oracle ser-
vices (or specify that the services are started when the machine boots), and on Unix
and Linux you issue the STARTUP command from SQL*Plus, or through Enterprise
Manager. While starting a database appears to be a single action, it involves an
instance and a database and occurs in several distinct phases. When you start a data-
base, the following actions are automatically executed:

Shutting Down the Database | 69

1. Starting the instance. Oracle reads the instance initialization parameters from the
SPFILE or INIT.ORA file on the server. Oracle then allocates memory for the
System Global Area and starts the background processes of the instance. At this
point, none of the physical files in the database have been opened, and the
instance is in the NOMOUNT state. (Note that the number of parameters that
must be defined in the SPFILE in Oracle Database 10g and Oracle Database 11g
as part of the initial installation setup have been greatly reduced. We described
the initialization parameters required in Oracle Database 11g in Chapter 2.)

There are problems that can prevent an instance from starting. For example,
there may be errors in the initialization file, or the operating system may not be
able to allocate the requested amount of shared memory for the SGA. You also
need the special privilege SYSOPER or SYSDBA, granted through either the
operating system or a password file, to start an instance.

2. Mounting the database. The instance opens the database’s control files. The ini-
tialization parameter CONTROL_FILES tells the instance where to find these
control files. At this point, only the control files are open. This is called the
MOUNT state, and the database is accessible only to the database administrator.
In this state, the DBA can perform only certain types of database administration.
For example, the DBA may have moved or renamed one of the database files. The
datafiles are listed in the control file but aren’t open in the MOUNT state. The
DBA can issue a command (ALTER DATABASE) to rename a datafile. This
command will update the control file with the new datafile name.

3. Opening the database. The instance opens the redo log files and datafiles using
the information in the control file. At this point, the database is fully open and
available for user access.

Shutting Down the Database
Logically enough, the process of shutting down a database or making it inaccessible
involves steps that reverse those discussed in the previous section:

1. Closing the database. Oracle flushes any modified database blocks that haven’t
yet been written to the disk from the SGA cache to the datafiles. Oracle also
writes out any relevant redo information remaining in the redo log buffer. Ora-
cle then checkpoints the datafiles, marking the datafile headers as “current” as of
the time the database was closed, and closes the datafiles and redo log files. At
this point, users can no longer access the database.

2. Dismounting the database. The Oracle instance dismounts the database. Oracle
updates the relevant entries in the control files to record a clean shutdown and then
closes them. At this point, the entire database is closed; only the instance remains.

3. Shutting down the instance. The Oracle software stops the background processes
of the instance and frees, or deallocates, the shared memory used for the SGA.

70 | Chapter 3: Installing and Running Oracle

In some cases (e.g., if there is a machine failure or the DBA aborts the instance), the
database may not be closed cleanly. If this happens, Oracle doesn’t have a chance to
write the modified database blocks from the SGA to the datafiles. When Oracle is
started again, the instance will detect that a crash occurred and will use the redo logs
to automatically perform what is called crash recovery. Crash recovery guarantees
that the changes for all committed transactions are done and that all uncommitted or
in-flight transactions will be cleaned up. The uncommitted transactions are deter-
mined after the redo log is applied and automatically rolled back.

Accessing a Database
The previous sections described the process of starting up and shutting down a data-
base. But the database is only part of a complete system—you also need a client
process to access the database, even if that process is on the same physical machine
as the database.

Server Processes and Clients
To access a database, a user connects to the instance that provides access to the
desired database. A program that accesses a database is really composed of two dis-
tinct pieces—a client program and a server process—that connect to the Oracle
instance. For example, running the Oracle character-mode utility SQL*Plus involves
two processes:

• The SQL*Plus process itself, acting as the client

• The Oracle server process, sometimes referred to as a shadow process, that pro-
vides the connection to the Oracle instance

Server process

The Oracle server process always runs on the computer on which the instance is run-
ning. The server process attaches to the shared memory used for the SGA and can
read from it and write to it.

As the name implies, the server process works for the client process—it reads and
passes back the requested data, accepts and makes changes on behalf of the client,
and so on. For example, when a client wants to read a row of data stored in a partic-
ular database block, the server process identifies the desired block and either
retrieves it from the database buffer cache or reads it from the correct datafile and
loads it into the database buffer cache. Then, if the user requests changes, the server
process modifies the block in the cache and generates and stores the necessary redo
information in the redo log buffer in the SGA. The server process, however, does not

Accessing a Database | 71

write the redo information from the log buffer to the redo log files, and it does not
write the modified database block from the buffer cache to the datafile. These
actions are performed by the Log Writer (LGWR) and Database Writer (DBWR)
processes, respectively.

Client process

The client process can run on the same machine as the instance or on a separate
computer. A network connects the two computers and provides a way for the two
processes to talk to each other. In either case, the concept is essentially the same—
two processes are involved in the interaction between a client and the database.
When both processes are on the same machine, Oracle uses local communications
via Inter Process Communication (IPC); when the client is on one machine and the
database server is on another, Oracle uses Oracle Net over the network to communi-
cate between the two machines.

Application Servers and Web Servers As Clients
Although the discussion in the previous section used the terms client and server
extensively, please don’t assume that Oracle is strictly a client/server database. Ora-
cle was one of the early pioneers of client/server computing based on the notion of
two tasks: a client and a server. But when you consider multitier computing involv-
ing web and application servers, the notion of a client changes somewhat. The
“client” process becomes the middle tier, or application server.

You can logically consider any process that connects to an Oracle instance a client in
the sense that it is served by the database. Don’t confuse this usage of the term client
with the actual client in a multitier configuration. The eventual client in a multitier
model is some type of program providing a user interface—for example, a browser
running Java.

The Oracle Application Server, which is part of the overall Oracle platform, is
designed to act as this middle tier. Application Server works seamlessly with the Ora-
cle database and shares some of the same technology. Application Server is described
in more detail in Chapter 15.

Figure 3-5 illustrates users connecting to an Oracle instance to access a database in
both two-tier and three-tier configurations, involving local and network communica-
tion. This figure highlights the server process connection models as opposed to the
interaction of the background processes. There is a traditional two-tier client/server
connection on the left side, a three-tier connection with an application server on the
right side, and a local client connection in the middle of the figure. The two-tier and
three-tier connections use a network to communicate with the database, while the
local client uses local IPC.

72 | Chapter 3: Installing and Running Oracle

Oracle Net and Establishing Network Connections
The server processes shown in Figure 3-5 are connected to the client processes using
some kind of network. How do client processes get hooked up with Oracle server
processes to begin working?

The matchmaker that arranges marriages between Oracle clients and server processes
is called the Oracle Net Listener. The Listener “listens” for incoming connection
requests for one or more instances. The Listener is not part of the Oracle instance—
it directs connection requests to the instance. The Listener is started and stopped
independently of the instance. If the Listener is down and the instance is up, clients
accessing the database over a network cannot find the instance because there is no
Listener to guide them. If the Listener is up and the instance is down, there is
nowhere to send clients.

The Listener’s function is relatively simple:

1. The client contacts the Listener over the network.

2. The Listener detects an incoming request and introduces the requesting client to
an Oracle server process.

3. The Listener introduces the server to the client by letting each know the other’s
network address.

4. The Listener steps out of the way and lets the client and server communicate
directly.

Figure 3-5. Accessing a database

Datafiles

Application
Server

NETWORK

Client

Client

NETWORK

SGA

Database Buffer
Cache Shared Pool Redo Log

Buffer

Local

IPC

Server
Local
Client Server Server

Accessing a Database | 73

Once the client and the server know how to find each other, they communicate
directly. The Listener is no longer required.

Figure 3-6 illustrates the steps outlined above for establishing a networked connec-
tion. Network traffic appears as dotted lines.

The Shared Server/Multi-Threaded Server
The server processes shown in the diagram are dedicated; they serve only one client
process. So, if an application has 1,000 clients, the Oracle instance will have 1,000
corresponding server processes. Each server process uses system resources such as
the memory and the CPU. Scaling to large user populations can consume a lot of
system resources. To support the ever-increasing demand for scalability, Oracle
introduced the Multi-Threaded Server (MTS) in Oracle7, known as the shared server
since Oracle9i.

Shared servers allow the Oracle instance to share a set of server processes across a
larger group of users. Instead of each client connecting to and using a dedicated
server, the clients use shared servers, which can significantly reduce the overall
resource requirements for serving large numbers of users.

In many systems there are times when the clients aren’t actively using their server
process, such as when users are reading and absorbing data retrieved from the data-
base. When a client is not using its server process in the dedicated model, that server

Figure 3-6. Connecting with the Oracle Net Listener

74 | Chapter 3: Installing and Running Oracle

process still has a hold on system resources even though it isn’t doing any useful
work. In the shared server model, the shared server can use the resources of an inac-
tive client to do work for another client process.

You don’t have to make a mutually exclusive choice between shared server pro-
cesses and dedicated server processes for an Oracle instance. Oracle can mix and
match dedicated and shared servers, and clients can connect to one or the other. The
choice is based on your Oracle Net configuration files. In the configuration files there
will be one service name that leads the client to a dedicated server, and another for
connecting via shared servers. The Oracle Net manuals provide the specific syntax
for this configuration.

The type of server process a client is using is transparent to the client. From a client
perspective, the multithreading or sharing of server processes happens “under the
covers,” on the database server. The same Listener handles dedicated and multi-
threaded connection requests.

The steps the Listener takes in establishing a shared server connection are a little
different and involve some additional background processes for the instance dis-
patchers and the shared servers themselves:

Dispatchers
In the previous description of the Listener, you saw how it forms the connection
between a client and server process and then steps out of the way. The client
must now be able to depend on a server process that is always available to com-
plete the connection. Because a shared server process may be servicing another
client, the client connects to a dispatcher, which is always ready to receive any
client request. There are separate dispatchers for each network protocol being
used (e.g., dispatchers for TCP/IP, etc.). The dispatchers serve as surrogate dedi-
cated servers for the clients. Clients directly connect to their dispatchers instead
of to a server. The dispatchers accept requests from clients and place them in a
request queue, which is a memory structure in the SGA. There is one request
queue for each instance.

Shared servers
The shared server processes read from the request queue, process the requests,
and place the results in the response queue for the appropriate dispatcher. There
is one response queue for each dispatcher. The dispatcher then reads the results
from the response queue and sends the information back to the client process.

There is a pool of dispatchers and a pool of shared servers. Oracle starts a certain
number of each based on the initialization parameter SHARED_SERVERS that speci-
fies the minimum number of shared servers. Oracle can start additional shared
servers up to the value of an optionally specified initialization parameter MAX_
SHARED_SERVERS. If Oracle starts additional processes to handle a heavier request
load and the load dies down again, Oracle gradually reduces the number of pro-
cesses to the floor specified by SHARED_SERVERS.

Accessing a Database | 75

The following steps show how establishing a connection and using shared server
processes differ from using a dedicated server process:

1. The client contacts the Listener over the network.

2. The Listener detects an incoming request and, based on the Oracle Net configu-
ration, determines that it is for a multithreaded server. Instead of handing the
client off to a dedicated server, the Listener hands the client off to a dispatcher
for the network protocol the client is using.

3. The Listener introduces the client and the dispatcher by letting each know the
other’s network address.

4. Once the client and the dispatcher know where to find each other, they commu-
nicate directly. The Listener is no longer required. The client sends each work
request directly to the dispatcher.

5. The dispatcher places the client’s request in the request queue in the SGA.

6. The next available shared server process reads the request from the request
queue and does the work.

7. The shared server places the results for the client’s request in the response queue
for the dispatcher that originally submitted the request.

8. The dispatcher reads the results from its queue.

9. The dispatcher sends the results to the client.

Figure 3-7 illustrates the steps for using the shared servers. Network traffic appears
as dotted lines.

Figure 3-7. Connecting with the Oracle Net Listener (shared servers)

76 | Chapter 3: Installing and Running Oracle

Session memory for shared server processes versus dedicated server processes

There is a concept in Oracle known as session memory or state. State information is
basically data that describes the current status of a session in Oracle. For example,
state information contains information about the SQL statements executed by the
session. When you use a dedicated server, this state is stored in the private memory
used by the dedicated server. This works out well because the dedicated server works
with only one client. The term for this private memory is the Program Global Area
(PGA).

If you’re using the shared servers, however, any server can work on behalf of a spe-
cific client. The session state cannot be stored in the PGA of the shared server
process. All servers must be able to access the session state because the session can
migrate between different shared servers. For this reason, Oracle places this state
information in the System Global Area (SGA).

All servers can read from the SGA. Putting the state information in the SGA allows a
session and its state to move from one shared server to another for processing differ-
ent requests. The server that picks up the request from the request queue simply
reads the session state from the SGA, updates the state as needed for processing, and
puts it back in the SGA when processing has finished.

The request and response queues, as well as the session state, require additional
memory in the SGA, so in older Oracle releases, you would allocate more memory
manually if you were using shared servers. By default, the memory for the shared
server session state comes from the shared pool. Alternatively, you could also config-
ure something called the large pool as a separate area of memory for shared servers.
(We introduced the large pool in Chapter 2 in the “Memory Structures for an
Instance” section.) Using the large pool memory avoided the overhead of coordinat-
ing memory usage with the shared SQL, dictionary caching, and other functions of
the shared pool. This allowed memory management from the large pool and avoided
competing with other subsystems for space in and access to the shared pool. Since
Oracle Database 10g, shared memory is automatically managed by default. Oracle
Database 11g introduced automated memory management of the SGA and PGA size
by default when you set the MEMORY_TARGET initialization parameter.

Data dictionary information about the shared server

The data dictionary, which we introduced in Chapter 2, also contains information
about the operation of the MTS in the following views:

V$SHARED_SERVER_MONITOR
This view contains dynamic information about the shared servers, such as high-
water marks for connections and how many shared servers have been started
and stopped in response to load variations.

Oracle at Work | 77

V$DISPATCHER
This view contains details of the dispatcher processes used by the shared server.
It can determine how busy the dispatchers are.

V$SHARED_SERVER
This view contains details of the shared server processes used by the shared
server. It can determine how busy the servers are, to help set the floor and ceil-
ing values appropriately.

V$CIRCUIT
You can think of the route from a client to its dispatcher and from the dis-
patcher to the shared server (using the queues) as a virtual circuit. This view
details these virtual circuits for user connections.

Oracle at Work
To help you truly understand how all the disparate pieces of the Oracle database
work together, this section walks through an example of the steps taken by the Ora-
cle database to respond to a user request. This example examines the work of a user
who is adding new information to the database—in other words, executing a
transaction.

Oracle and Transactions
A transaction is a work request from a client to insert, update, or delete data. The
statements that change data are a subset of the SQL language called Data Manipula-
tion Language (DML). Transactions must be handled in a way that guarantees their
integrity. Although Chapter 8 delves into transactions more deeply, we must visit a
few basic concepts relating to transactions now in order to understand the example
in this section:

Transactions are logical and complete
In database terms, a transaction is a logical unit of work composed of one or
more data changes. A transaction may consist of multiple INSERT, UPDATE,
and/or DELETE statements affecting data in multiple tables. The entire set of
changes must succeed or fail as a complete unit of work. A transaction starts
with the first DML statement and ends with either a commit or a rollback.

Oracle also supports autonomous transactions, transactions whose
work is committed or rolled back, but that exist within the context of
a larger transaction. Autonomous transactions are important because
they can commit work without destroying the context of the larger
transaction.

78 | Chapter 3: Installing and Running Oracle

Commit or rollback
Once a user enters the data for his transaction, he can either commit the transac-
tion to make the changes permanent or roll back the transaction to undo the
changes.

System Change Number (SCN)
A key factor in preserving database integrity is an awareness of which transac-
tion came first. For example, if Oracle is to prevent a later transaction from
unwittingly overwriting an earlier transaction’s changes, it must know which
transaction began first. The mechanism Oracle uses is the System Change Num-
ber, a logical timestamp used to track the order in which events occurred. Oracle
also uses the SCN to implement multiversion read consistency, which is
described in detail in Chapter 8.

Rollback segments
Rollback segments are structures in the Oracle database used to store “undo”
information for transactions, in case of rollback. This undo information restores
database blocks to the state they were in before the transaction in question
started. When a transaction starts changing some data in a block, it first writes
the old image of the data to a rollback segment. The information stored in a
rollback segment is used for two main purposes: to provide the information nec-
essary to roll back a transaction and to support multiversion read consistency.

A rollback segment is not the same as a redo log. The redo log is used to log all
transactions to the database and to recover the database in the event of a system
failure, while the rollback segment provides rollback for transactions and read
consistency.

Blocks of rollback segments are cached in the SGA just like blocks of tables and
indexes. If rollback segment blocks are unused for a period of time, they may be
aged out of the cache and written to the disk.

Chapter 8 discusses Oracle’s method for concurrency management,
multiversion read consistency. This method uses rollback segments to
retrieve earlier versions of changed rows. If the required blocks are no
longer available, Oracle delivers a “snapshot too old” error.

Oracle9i introduced automatic management of rollback segments. In previous
versions of the Oracle database, DBAs had to explicitly create and manage
rollback segments. In Oracle9i, you had the option of specifying automatic man-
agement of all rollback segments through the use of an undo tablespace. With
automatic undo management, you can also specify the length of time that you
want to keep undo information; this feature is very helpful if you plan on using
flashback queries, discussed in the following section. Oracle Database 10g added
an undo management retention time advisor.

Oracle at Work | 79

Fast commits
Because redo logs are written whenever a user commits an Oracle transaction, they
can be used to speed up database operations. When a user commits a transaction,
Oracle can do one of two things to get the changes into the database on the disk:

• Write all the database blocks the transaction changed to their respective
datafiles.

• Write only the redo information, which typically involves much less I/O
than writing the database blocks. This recording of the changes can be
replayed to reproduce all the transaction’s changes later, if they are needed
due to a failure.

To provide maximum performance without risking transactional integrity, Ora-
cle writes out only the redo information. When a user commits a transaction,
Oracle guarantees that the redo for those changes writes to the redo logs on disk.
The actual changed database blocks will be written out to the datafiles later. If a
failure occurs before the changed blocks are flushed from the cache to the
datafiles, the redo logs will reproduce the changes in their entirety. Because the
slowest part of a computer system is the physical disk, Oracle’s fast-commit
approach minimizes the cost of committing a transaction and provides maxi-
mum risk-free performance.

Flashback
In Oracle9i, rollback segments were also used to implement a feature called Flash-
back Query. Remember that rollback segments are used to provide a consistent
image of the data in your Oracle database at a previous point in time. With Flash-
back Query, you can direct Oracle to return the results for a SQL query at a specific
point in time. For instance, you could ask for a set of results from the database as of
two hours ago. Flashback provided extra functionality by leveraging the rollback fea-
ture that was already a core part of the Oracle architecture.

Since Flashback uses rollback segments, you can only flash back as far as the infor-
mation in the current rollback segment. This requirement typically limits the span of
flashback to a relatively short period of time—you normally would not be able to roll
back days, since your Oracle database doesn’t keep that much rollback information
around. Despite this limitation, there are scenarios in which you might be able to use
a Flashback Query effectively, such as going back to a point in time before a user
made an error that resulted in a loss of data.

The use of Flashback has increased as Oracle has added more flashback capabilities
to the database. Oracle Database 10g greatly expanded the flashback capabilities
available to include:

• Flashback Database, to roll back the entire database to a consistent state

• Flashback Table, to roll back a specific table

80 | Chapter 3: Installing and Running Oracle

• Flashback Drop to roll back a DROP operation

• Flashback Versions Query, to retrieve changes to one or more rows

Oracle Database 11g continues this expansion with the Flashback Transaction
feature, which can be used to reverse the effect of a transaction and any other trans-
actions that are dependent on it.

A Transaction, Step by Step
This simple example illustrates the complete process of a transaction. The example
uses the EMP table of employee data, which is part of the traditional test schema
shipped with Oracle databases. In this example, an HR clerk wants to update the
name of an employee. The clerk retrieves the employee’s data from the database,
updates the name, and commits the transaction.

The example assumes that only one user is trying to update the information for a row
in the database. Because of this assumption, it won’t include the steps normally
taken by Oracle to protect the transaction from changes by other users, which are
detailed in Chapter 8.

The HR clerk already has the employee record on-screen and so the database block
containing the row for that employee is already in the database buffer cache. The
steps from this point would be:

1. The user modifies the employee name on-screen and the client application sends
a SQL UPDATE statement over the network to the server process.

2. The server process looks for an identical statement in the shared SQL area of the
shared pool. If it finds one, it reuses it. Otherwise, it checks the statement for
syntax and evaluates it to determine the best way to execute it. This processing
of the SQL statement is called parsing and optimizing. (The optimizer is
described in more detail in Chapter 4.) Once the processing is done, the state-
ment is cached in the shared SQL area.

3. The server process copies the old image of the employee data about to be changed
to a rollback segment and to a redo seqment. The rollback segment changes are
part of the redo. This may seem a bit odd, but remember that redo is generated
for all changes resulting from the transaction. The contents of the rollback seg-
ment have changed because the old employee data was written to the rollback
segment for undo purposes. This change to the contents of the rollback segment is
part of the transaction and therefore part of the redo for that transaction.

4. Once the server process has completed this work, the process modifies the data-
base block to change the employee name. The database block is stored in the
database cache at this time.

Oracle at Work | 81

5. The HR clerk commits the transaction.

6. The Log Writer (LGWR) process writes the redo information for the entire
transaction from the redo log buffer to the current redo log file on disk. When
the operating system confirms that the write to the redo log file has successfully
completed, the transaction is considered committed.

7. The server process sends a message to the client confirming the commit.

The user could have canceled or rolled back the transaction instead of committing it,
in which case the server process would have used the old image of the employee data
in the rollback segment to undo the change to the database block.

Figure 3-8 shows the steps described here. Network traffic appears as dotted lines.

Figure 3-8. Steps for a transaction

SGA

LGWR

DatafilesControl FIlesRedo Logs

Redo Log
 Buffer Shared Pool Database Buffer

 Cache

Client

NETWORK

6

5 Commit

7 Committed!

Redo to disk 1 Update

Server

Save undo
and update
em

p nam
e

Reuse or

process SQL

Redo for changes

3 2 4

82

Chapter 4CHAPTER 4

Oracle Data Structures 4

In the previous chapters, we examined some distinctions between the different com-
ponents that make up an Oracle database. For example, we pointed out that the
Oracle instance differs from the files that make up the physical storage of the data in
tablespaces, that you cannot access the data in a tablespace except through an Ora-
cle instance, and that the instance itself isn’t very valuable without the data stored in
those files.

The instance is the logical entity used by applications and users, separate from the
physical storage of data. In a similar way, the actual tables and columns are logical
entities within the physical database. The user who makes a request for data from an
Oracle database probably doesn’t know anything about instances and tablespaces, but
does know about the structure of her data, as implemented with tables and columns.
To fully leverage the power of Oracle, you must understand how the Oracle database
server implements and uses these logical data structures, the topic of this chapter.

Datatypes
The datatype is one of the attributes for a column or a variable in a stored procedure.
A datatype describes and limits the type of information stored in a column, and can
limit the operations that you can perform on columns.

You can divide Oracle datatype support into three basic varieties: character
datatypes, numeric datatypes, and datatypes that represent other kinds of data. You
can use any of these datatypes when you create columns in a table, as with this SQL
statement:

CREATE SAMPLE_TABLE(
 char_field CHAR(10),
 varchar_field VARCHAR2(10),
 todays_date DATE)

You also use these datatypes when you define variables as part of a PL/SQL procedure.

Datatypes | 83

Character Datatypes
Character datatypes can store any string value, including the string representations of
numeric values. Assigning a value larger than the length specified or allowed for a
character datatype results in a runtime error. You can use string functions, such as
UPPER, LOWER, SUBSTR, and SOUNDEX, on standard (not large) character value
types.

There are several different character datatypes:

CHAR
The CHAR datatype stores character values with a fixed length. A CHAR
datatype can have between 1 and 2,000 characters. If you don’t explicitly spec-
ify a length for a CHAR, it assumes the default length of 1. If you assign a value
that’s shorter than the length specified for the CHAR datatype, Oracle will auto-
matically pad the value with blanks. Some examples of CHAR values are:

CHAR(10) = "Rick ", "Jon ", "Stackowiak"

VARCHAR2
The VARCHAR2 datatype stores variable-length character strings. Although you
must assign a length to a VARCHAR2 datatype, this length is the maximum
length for a value rather than the required length. Values assigned to a
VARCHAR2 datatype aren’t padded with blanks. The VARCHAR2 datatype can
have up to 4,000 characters. Because of this, a VARCHAR2 datatype can require
less storage space than a CHAR datatype, because the VARCHAR2 datatype
stores only the characters assigned to the column.

At this time, the VARCHAR and VARCHAR2 datatypes are synonymous in
Oracle8 and later versions, but Oracle recommends the use of VARCHAR2
because future changes may cause VARCHAR and VARCHAR2 to diverge. The
values shown earlier for the CHAR values, if entered as VARCHAR2 values, are:

VARCHAR2(10) = "Rick", "Jon", "Stackowiak"

NCHAR and NVARCHAR2
The NCHAR and NVARCHAR2 datatypes store fixed-length or variable-length
character data, respectively, using a different character set from the one used by
the rest of the database. When you create a database, you specify the character
set that will be used for encoding the various characters stored in the database.
You can optionally specify a secondary character set as well (which is known as
the National Language Set, or NLS). The secondary character set will be used for
NCHAR and NVARCHAR2 columns. For example, you may have a description
field in which you want to store Japanese characters while the rest of the data-
base uses English encoding. You would specify a secondary character set that
supports Japanese characters when you create the database, and then use the
NCHAR or NVARCHAR2 datatype for the columns in question.

84 | Chapter 4: Oracle Data Structures

Starting with Oracle9i, you can specify the length of NCHAR and NVARCHAR2
columns in characters, rather than in bytes. For example, you can indicate that a
column with one of these datatypes is 7 characters. The Oracle9i database will
automatically make the conversion to 14 bytes of storage if the character set
requires double-byte storage.

Oracle Database 10g introduced the Globalization Development Kit
(GDK), which is designed to aid in the creation of Internet applica-
tions that will be used with different languages. The key feature of this
kit is a framework that implements best practices for globalization for
Java and PL/SQL developers.

Oracle Database 10g also added support for case- and accent-insensi-
tive queries and sorts. You can use this feature if you want to use only
base letters or base letters and accents in a query or sort.

LONG
The LONG datatype can hold up to 2 GB of character data. It is regarded as a
legacy datatype from earlier versions of Oracle. If you want to store large
amounts of character data, Oracle now recommends that you use the CLOB and
NCLOB datatypes. There are many restrictions on the use of LONG datatypes in
a table and within SQL statements, such as the fact that you cannot use LONGs
in WHERE, GROUP BY, ORDER BY, or CONNECT BY clauses or in SQL
statements with the DISTINCT qualifier. You also cannot create an index on a
LONG column.

CLOB and NCLOB
The CLOB and NCLOB datatypes can store up to 4 GB of character data prior
to Oracle Database 10g. Starting with Oracle Database 10g, the limit has been
increased to 128 TBs, depending on the block size of the database. The NCLOB
datatype stores the NLS data. Oracle Database 10g and later releases implicitly
perform conversions between CLOBs and NCLOBs. For more information on
CLOBs and NCLOBs, please refer to the discussion about large objects (LOBs)
in the section “Other Datatypes” later in this chapter.

Numeric Datatype
Oracle uses a standard, variable-length internal format for storing numbers. This
internal format can maintain a precision of up to 38 digits.

The numeric datatype for Oracle is NUMBER. Declaring a column or variable as
NUMBER will automatically provide a precision of 38 digits. The NUMBER
datatype can also accept two qualifiers, as in:

column NUMBER(precision, scale)

Datatypes | 85

The precision of the datatype is the total number of significant digits in the number.
You can designate a precision for a number as any number of digits up to 38. If no
value is declared for precision, Oracle will use a precision of 38. The scale represents
the number of digits to the right of the decimal point. If no scale is specified, Oracle
will use a scale of 0.

If you assign a negative number to the scale, Oracle will round the number up to the
designated place to the left of the decimal point. For example, the following code
snippet:

column_round NUMBER(10,-2)
column_round = 1,234,567

will give column_round a value of 1,234,600.

The NUMBER datatype is the only datatype that stores numeric values in Oracle.
The ANSI datatypes of DECIMAL, NUMBER, INTEGER, INT, SMALLINT,
FLOAT, DOUBLE PRECISION, and REAL are all stored in the NUMBER datatype.
The language or product you’re using to access Oracle data may support these
datatypes, but they’re all stored in a NUMBER datatype column.

With Oracle Database 10g, Oracle added support for the precision defined in the
IEEE 754-1985 standard with the number datatypes of BINARY_FLOAT and
BINARY_DOUBLE. Oracle Database 11g added support for the number datatype
SIMPLE_INTEGER.

Date Datatype
As with the NUMERIC datatype, Oracle stores all dates and times in a standard
internal format. The standard Oracle date format for input takes the form of DD-
MON-YY HH:MI:SS, where DD represents up to two digits for the day of the
month, MON is a three-character abbreviation for the month, YY is a two-digit rep-
resentation of the year, and HH, MI, and SS are two-digit representations of hours,
minutes, and seconds, respectively. If you don’t specify any time values, their default
values are all zeros in the internal storage.

You can change the format you use for inserting dates for an instance by changing
the NLS_DATE_FORMAT parameter for the instance. You can do this for a session
by using the ALTER SESSION SQL statement or for a specific value by using param-
eters with the TO_DATE expression in your SQL statement.

Oracle SQL supports date arithmetic in which integers represent days and fractions
represent the fractional component represented by hours, minutes, and seconds. For
example, adding .5 to a date value results in a date and time combination 12 hours
later than the initial value. Some examples of date arithmetic are:

12-DEC-07 + 10 = 22-DEC-07
31-DEC-2007:23:59:59 + .25 = 1-JAN-2008:5:59:59

86 | Chapter 4: Oracle Data Structures

As of Oracle9i Release 2, Oracle also supports two INTERVAL datatypes, INTER-
VAL YEAR TO MONTH and INTERVAL DAY TO SECOND, which are used for
storing a specific amount of time. This data can be used for date arithmetic.

Other Datatypes
Aside from the basic character, number, and date datatypes, Oracle supports a num-
ber of specialized datatypes:

RAW and LONG RAW
Normally, your Oracle database not only stores data but also interprets it. When
data is requested or exported from the database, the Oracle database sometimes
massages the requested data. For instance, when you dump the values from a
NUMBER column, the values written to the dump file are the representations of
the numbers, not the internally stored numbers.

The RAW and LONG RAW datatypes circumvent any interpretation on the part
of the Oracle database. When you specify one of these datatypes, Oracle will
store the data as the exact series of bits presented to it. The RAW datatypes typi-
cally store objects with their own internal format, such as bitmaps. A RAW
datatype can hold 2 KB, while a LONG RAW datatype can hold 2 GB.

ROWID
The ROWID is a special type of column known as a pseudocolumn. The ROWID
pseudocolumn can be accessed just like a column in a SQL SELECT statement.
There is a ROWID pseudocolumn for every row in an Oracle database. The
ROWID represents the specific address of a particular row. The ROWID
pseudocolumn is defined with a ROWID datatype.

The ROWID relates to a specific location on a disk drive. Because of this, the
ROWID is the fastest way to retrieve an individual row. However, the ROWID
for a row can change as the result of dumping and reloading the database. For
this reason, we don’t recommend using the value for the ROWID pseudocol-
umn across transaction lines. For example, there is no reason to store a reference
to the ROWID of a row once you’ve finished using the row in your current
application.

You cannot set the value of the standard ROWID pseudocolumn with any SQL
statement.

The format of the ROWID pseudocolumn changed with Oracle8. Beginning
with Oracle8, the ROWID includes an identifier that points to the database
object number in addition to the identifiers that point to the datafile, block, and
row. You can parse the value returned from the ROWID pseudocolumn to
understand the physical storage of rows in your Oracle database.

You can define a column or variable with a ROWID datatype, but Oracle doesn’t
guarantee that any value placed in this column or variable is a valid ROWID.

Datatypes | 87

ORA_ROWSCN
Oracle Database 10g and later releases support a pseudocolumn ORA_ROWSCN,
which holds the System Change Number (SCN) of the last transaction that modi-
fied the row. You can use this pseudocolumn to check easily for changes in the
row since a transaction started. For more information on SCNs, see the discus-
sion of concurrency in Chapter 8.

LOB
A LOB, or large object datatype, can store up to 4 GB of information. LOBs
come in three varieties:

• CLOB, which can store only character data

• NCLOB, which stores National Language character set data

• BLOB, which stores data as binary information

You can designate that a LOB should store its data within the Oracle database or
that it should point to an external file that contains the data.

LOBs can participate in transactions. Selecting a LOB datatype from Oracle will
return a pointer to the LOB. You must use either the DBMS_LOB PL/SQL built-
in package or the OCI interface to actually manipulate the data in a LOB.

To facilitate the conversion of LONG datatypes to LOBs, Oracle9i included sup-
port for LOBs in most functions that support LONGs, as well as an option to the
ALTER TABLE statement that allows the automatic migration of LONG
datatypes to LOBs.

BFILE
The BFILE datatype acts as a pointer to a file stored outside of the Oracle data-
base. Because of this fact, columns or variables with BFILE datatypes don’t
participate in transactions, and the data stored in these columns is available only
for reading. The file size limitations of the underlying operating system limit the
amount of data in a BFILE.

XMLType
As part of its support for XML, Oracle9i introduced a datatype called XML-
Type. A column defined as this type of data will store an XML document in a
character LOB column. There are built-in functions that allow you to extract
individual nodes from the document, and you can also build indexes on any par-
ticular node in the XMLType document.

User-defined data
Oracle8 and later versions allow users to define their own complex datatypes,
which are created as combinations of the basic Oracle datatypes previously dis-
cussed. These versions of Oracle also allow users to create objects composed of
both basic datatypes and user-defined datatypes. For more information about
objects within Oracle, see Chapter 14.

88 | Chapter 4: Oracle Data Structures

AnyType, AnyData, AnyDataSet
Oracle9i and newer releases include three datatypes that can be used to explic-
itly define data structures that exist outside the realm of existing datatypes. Each
of these datatypes must be defined with program units that let Oracle know how
to process any specific implementation of these types.

Type Conversion
Oracle automatically converts some datatypes to other datatypes, depending on the
SQL syntax in which the value occurs.

When you assign a character value to a numeric datatype, Oracle performs an
implicit conversion of the ASCII value represented by the character string into a
number. For instance, assigning a character value such as 10 to a NUMBER column
results in an automatic data conversion.

If you attempt to assign an alphabetic value to a numeric datatype, you will end up
with an unexpected (and invalid) numeric value, so you should make sure that
you’re assigning values appropriately.

You can also perform explicit conversions on data, using a variety of conversion
functions available with Oracle. Explicit data conversions are better to use if a
conversion is anticipated, because they document the conversion and avoid the pos-
sibility of going unnoticed, as implicit conversions sometimes do.

Concatenation and Comparisons
The concatenation operator for Oracle SQL on most platforms is two vertical lines
(||). Concatenation is performed with two character values. Oracle’s automatic type
conversion allows you to seemingly concatenate two numeric values. If NUM1 is a
numeric column with a value of 1, NUM2 is a numeric column with a value of 2, and
NUM3 is a numeric column with a value of 3, the following expressions are TRUE:

NUM1 || NUM2 || NUM3 = "123"
NUM1 || NUM2 + NUM3 = "15" (12 + 3)
NUM1 + NUM2 || NUM3 = "33" (1+ 2 || 3)

The result for each of these expressions is a character string, but that character string
can be automatically converted back to a numeric column for further calculations.

Comparisons between values of the same datatype work as you would expect. For
example, a date that occurs later in time is larger than an earlier date, and 0 or any
positive number is larger than any negative number. You can use relational opera-
tors to compare numeric values or date values. For character values, comparisons of
single characters are based on the underlying code pages for the characters. For mul-
ticharacter strings, comparisons are made until the first character that differs
between the two strings appears.

Datatypes | 89

If two character strings of different lengths are compared, Oracle uses two different
types of comparison semantics: blank-padded comparisons and nonpadded compari-
sons. For a blank-padded comparison, the shorter string is padded with blanks and
the comparison operates as previously described. For nonpadded comparisons, if
both strings are identical for the length of the shorter string, the shorter string is
identified as smaller. For example, in a blank-padded comparison the string “A ” (a
capital A followed by a blank) and the string “A” (a capital A by itself) would be seen
as equal, because the second value would be padded with a blank. In a nonpadded
comparison, the second string would be identified as smaller because it is shorter
than the first string. Nonpadded comparisons are used for comparisons in which one
or both of the values are VARCHAR2 or NVARCHAR2 datatypes, while blank-
padded comparisons are used when neither of the values is one of these datatypes.

Oracle Database 10g and later releases include a feature called the Expression Filter,
which allows you to store a complex comparison expression as part of a row. You
can use the EVALUATE function to limit queries based on the evaluation of the
expression. The Expression Filter uses regular expressions, which are described later
in this chapter.

NULLs
The NULL value is one of the key features of the relational database. The NULL, in
fact, doesn’t represent any value at all—it represents the lack of a value. When you
create a column for a table that must have a value, you specify it as NOT NULL,
meaning that it cannot contain a NULL value. If you try to write a row to a database
table that doesn’t assign a value to a NOT NULL column, Oracle will return an
error.

You can assign NULL as a value for any datatype. The NULL value introduces what
is called three-state logic to your SQL operators. A normal comparison has only two
states: TRUE or FALSE. If you’re making a comparison that involves a NULL value,
there are three logical states: TRUE, FALSE, and neither.

None of the following conditions are true for Column A if the column contains a
NULL value:

A > 0
A < 0
A = 0
A != 0

The existence of three-state logic can be confusing for end users, but your data may
frequently require you to allow for NULL values for columns or variables.

90 | Chapter 4: Oracle Data Structures

You have to test for the presence of a NULL value with the relational operator IS
NULL, since a NULL value is not equal to 0 or any other value. Even the expression:

NULL = NULL

will always evaluate to FALSE, since a NULL value doesn’t equal any other value.

Basic Data Structures
This section describes the three basic Oracle data structures: tables, views, and
indexes. This section also discusses partitioning, which affects the way that data in
tables and indexes is stored.

Tables
The table is the basic data structure used in a relational database. A table is a collec-
tion of rows. Each row in a table contains one or more columns. If you’re unfamiliar
with relational databases, you can map a table to the concept of a file or database in
a nonrelational database, just as you can map a row to the concept of a record in a
nonrelational database.

As of Oracle9i, you can define external tables. As the name implies, the data for an
external table is stored outside the database, typically in a flat file. The external table

Should You Use NULLs?
The idea of three-state logic may seem somewhat confusing, especially when you imag-
ine your poor end users executing ad hoc queries and trying to account for a value
that’s neither TRUE nor FALSE. This prospect may concern you, so you may decide
not to use NULL values at all.

We believe that NULLs have an appropriate use. The NULL value covers a very spe-
cific situation: a time when a column has not had a value assigned. The alternative to
using a NULL is using a value with another meaning—such as 0 for numbers—and
then trying to somehow determine whether that value has actually been assigned or
simply exists as a replacement for NULL.

If you choose not to use NULL values, you’re forcing a value to be assigned to a column
for every row. You are, in effect, eliminating the possibility of having a column that
doesn’t require a value, as well as potentially assigning misleading values for certain
columns. This situation can be misleading for end users and can lead to inaccurate
results for summary actions such as AVG (average).

Avoiding NULL values simply replaces one problem—educating users or providing
them with an interface that implicitly understands NULL values—with another set of
problems, which can lead to a loss of data integrity.

Basic Data Structures | 91

is read-only; you cannot update the data it contains. The external table is good for
loading and unloading data to files from a database, among other purposes.

Oracle Database 11g introduces the ability to create virtual columns for a table.
These columns are defined by an expression and, although the results of the expres-
sion are not stored, the columns can be accessed by applications at runtime.

Views
A view is an Oracle data structure defined through a SQL statement. The SQL state-
ment is stored in the database. When you use a view in a query, the stored query is
executed and the base table data is returned to the user. Views do not contain data,
but represent ways to look at the base table data in the way the query specifies.

You can use a view for several purposes:

• To simplify access to data stored in multiple tables.

• To implement specific security for the data in a table (e.g., by creating a view that
includes a WHERE clause that limits the data you can access through the view).
Starting with Oracle9i, you can use fine-grained access control to accomplish the
same purpose. Fine-grained access control gives you the ability to automatically
limit data access based on the value of data in a row.

• To isolate an application from the specific structure of the underlying tables.

A view is built on a collection of base tables, which can be either actual tables in an
Oracle database or other views. If you modify any of the base tables for a view so
that they no longer can be used for a view, that view itself can no longer be used.

In general, you can write to the columns of only one underlying base table of a view
in a single SQL statement. There are additional restrictions for INSERT, UPDATE,
and DELETE operations, and there are certain SQL clauses that prevent you from
updating any of the data in a view.

You can write to a nonupdateable view by using an INSTEAD OF trigger, which is
described later in this chapter.

Oracle8i introduced materialized views. These are not really views as defined in this
section, but are physical tables that hold presummarized data providing significant
performance improvements in a data warehouse. Materialized views are described in
more detail in Chapter 10.

Indexes
An index is a data structure that speeds up access to particular rows in a database.
An index is associated with a particular table and contains the data from one or more
columns in the table.

92 | Chapter 4: Oracle Data Structures

The basic SQL syntax for creating an index is shown in this example:

CREATE INDEX emp_idx1 ON emp (ename, job);

in which emp_idx1 is the name of the index, emp is the table on which the index is cre-
ated, and ename and job are the column values that make up the index.

The Oracle database server automatically modifies the values in the index when the
values in the corresponding columns are modified. Because the index contains less
data than the complete row in the table and because indexes are stored in a special
structure that makes them faster to read, it takes fewer I/O operations to retrieve the
data in them. Selecting rows based on an index value can be faster than selecting
rows based on values in the table rows. In addition, most indexes are stored in sorted
order (either ascending or descending, depending on the declaration made when you
created the index). Because of this storage scheme, selecting rows based on a range of
values or returning rows in sorted order is much faster when the range or sort order
is contained in the presorted indexes.

In addition to the data for an index, an index entry stores the ROWID for its associ-
ated row. The ROWID is the fastest way to retrieve any row in a database, so the
subsequent retrieval of a database row is performed in the most optimal way.

An index can be either unique (which means that no two rows in the table or view
can have the same index value) or nonunique. If the column or columns on which an
index is based contain NULL values, the row isn’t included in an index.

An index in Oracle refers to the physical structure used within the database. A key is
a term for a logical entity, typically the value stored within the index. In most places
in the Oracle documentation, the two terms are used interchangeably, with the nota-
ble exception of the foreign key constraint, which is discussed later in this chapter.

Four different types of index structures, which are described in the following sec-
tions, are used in Oracle: standard B*-tree indexes; reverse key indexes; bitmap
indexes; and function-based indexes, which were introduced in Oracle8i. Oracle
Database 11g delivers the ability to use invisible indexes, which are described below.
Oracle also gives you the ability to cluster the data in the tables, which can improve
performance. This is described later, in the section “Clusters.”

B*-tree indexes

The B*-tree index is the default index used in Oracle. It gets its name from its resem-
blance to an inverted tree, as shown in Figure 4-1.

The B*-tree index is composed of one or more levels of branch blocks and a single
level of leaf blocks. The branch blocks contain information about the range of values
contained in the next level of branch blocks. The number of branch levels between
the root and leaf blocks is called the depth of the index. The leaf blocks contain the
actual index values and the ROWID for the associated row.

Basic Data Structures | 93

The B*-tree index structure doesn’t contain many blocks at the higher levels of
branch blocks, so it takes relatively few I/O operations to read quite far down the B*-
tree index structure. All leaf blocks are at the same depth in the index, so all
retrievals require essentially the same amount of I/O to get to the index entry, which
evens out the performance of the index.

Oracle allows you to create index organized tables (IOTs), in which the leaf blocks
store the entire row of data rather than only the ROWID that points to the associ-
ated row. Index organized tables reduce the total amount of space needed to store an
index and a table by eliminating the need to store the ROWID in the leaf page. But
index organized tables cannot use a UNIQUE constraint or be stored in a cluster. In
addition, index organized tables don’t support distribution, replication, and parti-
tioning (covered in greater detail in other chapters), although IOTs can be used with
Oracle Streams for capturing and applying changes with Oracle Database 10g and
later releases.

There were a number of enhancements to index organized tables as of Oracle9i,
including a lifting of the restriction against the use of bitmap indexes as secondary
indexes for an IOT and the ability to create, rebuild, or coalesce secondary indexes
on an IOT. Oracle Database 10g continued this trend by allowing replication and all
types of partitioning for index organized tables, as well as providing other
enhancements.

Figure 4-1. A B*-tree index

Deal - ROWID
Howard - ROWID
Isis - ROWID

Adams
Brown
Culver

Deal
Howard
Isis

Jules
Klein
Main

Moss
Porter
Sikes

Sykes
Thomas
Topper

Vera
Wagner
Yanks

<Davis
Davis
Jones

Smith
Turner
Turner>

Miller

<Miller >Miller

Branch
blocks

Leaf
blocks

Detail of leaf node

94 | Chapter 4: Oracle Data Structures

Reverse key indexes

Reverse key indexes, as their name implies, automatically reverse the order of the
bytes in the key value stored in the index. If the value in a row is “ABCD”, the value
for the reverse key index for that row is “DCBA”.

To understand the need for a reverse key index, you have to review some basic facts
about the standard B*-tree index. First and foremost, the depth of the B*-tree is deter-
mined by the number of entries in the leaf nodes. The greater the depth of the B*-
tree, the more levels of branch nodes there are and the more I/O is required to locate
and access the appropriate leaf node.

The index illustrated in Figure 4-1 is a nice, well-behaved, alphabetic-based index.
It’s balanced, with an even distribution of entries across the width of the leaf pages.
But some values commonly used for an index are not so well behaved. Incremental
values, such as ascending sequence numbers or increasingly later date values, are
always added to the right side of the index, which is the home of higher and higher
values. In addition, any deletions from the index have a tendency to be skewed
toward the left side as older rows are deleted. The net effect of these practices is that
over time the index turns into an unbalanced B*-tree, where the left side of the index
is more sparsely populated than the leaf nodes on the right side. This unbalanced
growth has the overall effect of having an unnecessarily deep B*-tree structure, with
the left side of the tree more sparsely populated than the right side, where the new,
larger values are stored. The effects described here also apply to the values that are
automatically decremented, except that the left side of the B*-tree will end up hold-
ing more entries.

You can solve this problem by periodically dropping and re-creating the index. How-
ever, you can also solve it by using the reverse value index, which reverses the order
of the value of the index. This reversal causes the index entries to be more evenly dis-
tributed over the width of the leaf nodes. For example, rather than having the values
234, 235, and 236 be added to the maximum side of the index, they are translated to
the values 432, 532, and 632 for storage and then translated back when the values
are retrieved. These values are more evenly spread throughout the leaf nodes.

The overall result of the reverse index is to correct the imbalance caused by continu-
ally adding increasing values to a standard B*-tree index. For more information about
reverse key indexes and where to use them, refer to your Oracle documentation.

Bitmap indexes

In a standard B*-tree index, the ROWIDs are stored in the leaf blocks of the index. In
a bitmap index, each bit in the index represents a ROWID. If a particular row con-
tains a particular value, the bit for that row is “turned on” in the bitmap for that
value. A mapping function converts the bit into its corresponding ROWID. Unlike
other index types, bitmap indexes include entries for NULL values.

Basic Data Structures | 95

You can store a bitmap index in much less space than a standard B*-tree index if
there aren’t many values in the index. Figure 4-2 shows an illustration of how a bit-
map index is stored. Figure 10-3 in Chapter 10 shows how a bitmap index is used in
a selection condition.

The functionality provided by bitmap indexes is especially important in data ware-
housing applications in which each dimension of the warehouse contains many
repeating values, and queries typically require the interaction of several different
dimensions. For more about data warehousing, see Chapter 10.

Function-based indexes

Function-based indexes were introduced in Oracle8i. A function-based index is just
like a standard B*-tree or bitmap index, except that you can base the index on the
result of a SQL function, rather than just on the value of a column or columns.

Prior to Oracle8i, if you wanted to select on the result of a function, Oracle retrieved
every row in the database, executed the function, and then accepted or rejected each
row. With function-based indexes you can simply use the index for selection, with-
out having to execute the function on every row, every time.

For example, without a function-based index, if you wanted to perform a case-
insensitive selection of data you would have to use the UPPER function in the
WHERE clause, which would retrieve every candidate row and execute the func-
tion. With a function-based index based on the UPPER function, you can select
directly from the index.

Figure 4-2. Bitmap index

Part number 1 2 3 4 5 6

... ...

Bitmap index on 'color'

color =

color =

color =

'BLUE'

'RED'

'GREEN'

0 0 0 1 0 0 ...

1 0 0 0 0 1 ...

0 1 1 0 1 0 ...

partno color size weight

1
2
3
4
5
6

GREEN
RED
RED
BLUE
RED
GREEN

MED
MED
SMALL
LARGE
MED
SMALL

98.1
1241

100.1
54.9

124.1
60.1

... ...

PARTS table

96 | Chapter 4: Oracle Data Structures

As of Oracle Database 10g, you can perform case- or accent-insensitive
queries; these queries provide another way to solve this problem.

This capability becomes even more valuable when you consider that you can create
your own functions in an Oracle database. You can create a very sophisticated func-
tion and then create an index based on the function, which can dramatically affect
the performance of queries that require the function.

Invisible indexes

Oracle Database 11g introduces a new option for all of the index types we’ve dis-
cussed in previous sections—the invisible index. Normally, all indexes are used by
the optimizer, which is described later in this chapter. You can eliminate an index
from optimizer consideration by taking the index offline or by deleting the index. But
with both of these methods you will have to take some actions to bring the index up
to date when you bring it back into the database environment.

But what if you want to just remove the index from optimizer consideration for a
limited time, such as when you are testing performance? With the invisible option,
an index is not considered as a possible step in an access path, but updates and
deletes to the underlying data are still applied to the index.

Partitioning
With the Enterprise Editions of Oracle8 and beyond, you can purchase the Partition-
ing Option. As the name implies, this option allows you to partition tables and
indexes. Partitioning a data structure means that you can divide the information in
the structure among multiple physical storage areas. A partitioned data structure is
divided based on column values in the table. You can partition tables based on the
range of column values in the table (often date ranges), or as the result of a hash
function (which returns a value based on a calculation performed on the values in
one or more columns). As of Oracle9i you can also use a list of values to define a par-
tition, which can be particularly useful in a data warehouse environment. Oracle
Database 11g adds interval partitioning, providing the ability to automatically gener-
ate a new partition of a fixed interval or range when data to be inserted does not fit
into existing partition ranges.

You can also have two levels of partitions, called composite partitions, using a combi-
nation of partition methods. Prior to Oracle Database 11g, you could partition using
a composite of range and hash partitioning. Oracle Database 11g adds the ability to
combine list partitioning with list, range, or hash partitioning, or range partitioning
with a different range partitioning scheme.

Basic Data Structures | 97

Oracle is smart enough to take advantage of partitions to improve performance in
two ways:

• Oracle won’t bother to access partitions that won’t contain any data to satisfy
the query.

• If all the data in a partition satisfies a part of the WHERE clause for the query,
Oracle simply selects all the rows for the partition without bothering to evaluate
the clause for each row.

Partitioned tables are especially useful in a data warehouse, in which data can be par-
titioned based on the time period it spans.

Equally important is the fact that partitioning substantially reduces the scope of
maintenance operations and increases the availability of your data. You can perform
all maintenance operations, such as backup, recovery, and loading, on a single parti-
tion. This flexibility makes it possible to handle extremely large data structures while
still performing those maintenance operations in a reasonable amount of time. In
addition, if you must recover one partition in a table for some reason, the other parti-
tions in the table can remain online during the recovery operation.

If you have been working with other databases that don’t offer the same type of par-
titioning, you may have tried to implement a similar functionality by dividing a table
into several separate tables and then using a UNION SQL command to view the data
in several tables at once. Partitioned tables give you all the advantages of having sev-
eral identical tables joined by a UNION command without the complexity that
implementation requires.

To maximize the benefits of partitioning, it sometimes makes sense to partition a
table and an index identically so that both the table partition and the index partition
map to the same set of rows. You can automatically implement this type of partition-
ing, which is called equipartitioning, by specifying an index for a partitioned table as
a LOCAL index. Local indexes simplify maintenance, since standard operations,
such as dropping a partition, will work transparently with both the index partition
and the table partition.

Oracle has continued to increase the functionality of partitioning features. Since Ora-
cle Database 10g Release 2, you can reorganize individual partitions online, the max-
imum number of partitions increased from 64 KB – 1 to 128 KB – 1, and query
optimization using partition pruning improved.

Oracle Database 11g further improves partition pruning, enables applications to con-
trol partitioning, and adds a Partition Advisor that can help you to understand when
partitioning might improve the performance of your Oracle database.

For more details about the structure and limitations associated with partitioned
tables, refer to your Oracle documentation.

98 | Chapter 4: Oracle Data Structures

Additional Data Structures
There are several other data structures available in your Oracle database that can be
useful in some circumstances.

Sequences
One of the big problems that occurs in a multiuser database is the difficulty of sup-
plying unique numbers for use as keys or identifiers. For this situation, Oracle allows
you to create an object called a sequence. The sequence object is fairly simple. When-
ever anyone requests a value from it, it returns a value and increments its internal
value, avoiding contention and time-consuming interaction with the requesting
application. Oracle can cache a range of numbers for the sequence so that access to
the next number doesn’t have to involve disk I/O—the requests can be satisfied from
the range in the SGA.

Sequence numbers are defined with a name, an incremental value, and some additional
information about the sequence. Sequences exist independently of any particular table,
so more than one table can use the same sequence number.

Consider what might happen if you didn’t use Oracle sequences. You might store the
last sequence number used in a column in a table. A user who wanted to get the next
sequence number would read the last number, increment it by a fixed value, and
write the new value back to the column. But if many users tried to get a sequence
number at the same time, they might all read the “last” sequence number before the
new “last” sequence number had been written back. You could lock the row in the
table with the column containing the sequence number, but this would cause delays
as other users waited on locks. What’s the solution? Create a sequence.

Oracle Database 11g allows the use of sequences within PL/SQL expressions.

Synonyms
All data structures within an Oracle database are stored within a specific schema. A
schema is associated with a particular username, and all objects are referenced with
the name of the schema followed by the name of the object.

For instance, if there were a table named EMP in a schema named DEMO, the table
would be referenced with the complete name of DEMO.EMP. If you don’t supply a
specific schema name, Oracle assumes that the structure is in the schema for your
current username.

Schemas are a nice feature because object names have to be unique only within their
own schemas, but the qualified names for objects can get confusing, especially for end
users. To make names simpler and more readable, you can create a synonym for any
table, view, snapshot, or sequence, or for any PL/SQL procedure, function, or package.

Additional Data Structures | 99

Synonyms can be either public, which means that all users of a database can use
them, or private, which means that only the user whose schema contains the syn-
onym can use it.

For example, if the user DEMO creates a public synonym called EMP for the table
EMP in his schema, all other users can simply use EMP to refer to the EMP table in
DEMO’s schema. Suppose that DEMO didn’t create a public synonym and a user
called SCOTT wanted to use the name EMP to refer to the EMP table in DEMO’s
schema. The user SCOTT would create a private synonym in his schema. Of course,
SCOTT must have access to DEMO’s EMP table for this to work.

Synonyms simplify user access to a data structure. You can also use synonyms to
hide the location of a particular data structure, making the data more transportable
and increasing the security of the associated table by hiding the name of the schema
owner.

Prior to Oracle Database 10g, if you changed the location referenced by a synonym,
you would have to recompile any PL/SQL procedures that accessed the synonym.

Clusters
A cluster is a data structure that improves retrieval performance. A cluster, like an
index, does not affect the logical view of the table.

A cluster is a way of storing related data values together on disk. Oracle reads data a
block at a time, so storing related values together reduces the number of I/O opera-
tions needed to retrieve related values, since a single data block will contain only
related rows.

A cluster is composed of one or more tables. The cluster includes a cluster index,
which stores all the values for the corresponding cluster key. Each value in the clus-
ter index points to a data block that contains only rows with the same value for the
cluster key.

If a cluster contains multiple tables, the tables should be joined together and the
cluster index should contain the values that form the basis of the join. Because the
value of the cluster key controls the placement of the rows that relate to the key,
changing a value in that key can cause Oracle to change the location of rows associ-
ated with that key value.

Clusters may not be appropriate for tables that regularly require full table scans, in
which a query requires the Oracle database to iterate through all the rows of the
table. Because you access a cluster table through the cluster index, which then points
to a data block, full table scans on clustered tables can actually require more I/O
operations, lowering overall performance.

100 | Chapter 4: Oracle Data Structures

Hash Clusters
A hash cluster is like a cluster with one significant difference that makes it even
faster. Each request for data in a clustered table involves at least two I/O operations,
one for the cluster index and one for the data. A hash cluster stores related data rows
together, but groups the rows according to a hash value for the cluster key. The hash
value is calculated with a hash function, which means that each retrieval operation
starts with a calculation of the hash value and then goes directly to the data block
that contains the relevant rows.

By eliminating the need to go to a cluster index, a hash clustered table can be even
faster for retrieving data than a clustered table. You can control the number of possi-
ble hash values for a hash cluster with the HASHKEYS parameter when you create
the cluster.

Because the hash cluster directly points to the location of a row in the table, you
must allocate all the space required for all the possible values in a hash cluster when
you create the cluster.

Hash clusters work best when there is an even distribution of rows among the vari-
ous values for the hash key. You may have a situation in which there is already a
unique value for the hash key column, such as a unique ID. In such situations, you
can assign the value for the hash key as the value for the hash function on the unique
value, which eliminates the need to execute the hash function as part of the retrieval
process. In addition, you can specify your own hash function as part of the defini-
tion of a hash cluster.

Oracle Database 10g introduced sorted hash clusters, where data is not only stored
in a cluster based on a hash value, but is also stored in the order in which it was
inserted. This data structure improves performance for applications that access data
in the order in which it was added to the database.

Extended Logic for Data
There are a several features that have been added to the Oracle database that are not
unique data structures, but rather shape the way you can use the data in the data-
base: the Rules Manager and the Expression Filter.

Rules Manager
The database has been continually extending the functionality it can provide, from
mere data storage, which still enforced some logical attributes on data, to stored pro-
cedures. The Rules Manager, introduced with Oracle Database 10g Release 2, takes
this extension a step further.

Extended Logic for Data | 101

The concept behind the Rules Manager is simple. A rule is stored in the database and
is called and evaluated by applications. If business conditions or requirements
change, the rule covering those scenarios can be changed without having to touch
the application code. Rules can be shared across multiple application systems, bring-
ing standardization along with reduced maintenance across the set of applications.
You can also create granular rules that can be used in different combinations to
implement a variety of conditions.

Rules are invoked by events. The event causes the rule to be evaluated and results in
a rule action being performed, either immediately or at some later time.

The Rules Manager follows the event-condition action structure and helps users to
define five elements required for a Rules Manager application:

• Define an event structure, which is an object in your Oracle database. Different
events have different values for the attributes of the event object.

• Create rules, which include conditions and their subsequent actions.

• Create rule classes to store and group rules with similar structures.

• Create PL/SQL procedures to implement rules.

• Define a results view to configure the rules for external use when the PL/SQL
actions cannot be called, such as an application that runs on multiple tiers and
has rule actions that are invoked from the application server tier.

You can define conflict resolution routines to handle situations where more than one
rule is matched by an event. The Rules Manager also can aggregate different events
into composite events and maintain state information until all events are received.

Using rules can be a very powerful tool for implementing complex logic, but the use
of rules can affect your application design. For more information on the Rules Man-
ager, please refer to the Oracle documentation.

The Expression Filter
The Expression Filter, available since Oracle Database 10g, uses the Rules Manager
to work with expressions. An expression is another object type that contains
attributes evaluated by the Expression Filter. You add a VARCHAR2 column to a
table that stores the values for the attributes of an expression, use a PL/SQL built-in
package to add the expression to the column, and use standard SQL to set the val-
ues for the expression. To compare values to an expression, you use the EVALUATE
operator in the WHERE clause of your SQL statement.

Expressions can be used to define complex qualities for rows, since an expression
can have many attributes. You can also use expressions to implement many-to-many
relationships without an intermediary table by using expressions from two tables to
join the tables.

102 | Chapter 4: Oracle Data Structures

With the Enterprise Edition of Oracle, you can add an index to an expression, which
can provide the same performance benefits of an index to the qualities defined as an
expression.

Data Design
Tables and columns present a logical view of the data in a relational database. The
flexibility of a relational database gives you many options for grouping the individ-
ual pieces of data, represented by the columns, into a set of tables. To use Oracle
most effectively, you should understand and follow some firmly established princi-
ples of database design.

The topic of database design is vast and deep: we won’t even pretend to offer more
than a cursory overview. For more information, we recommend the book Oracle
Design by Dave Ensor and Ian Stevenson (O’Reilly; see Appendix B for details).

When E. F. Codd created the concept of a relational database in the 1960s, he also
began work on the concept of normalized data design. The theory behind normalized
data design is pretty straightforward: a table should contain only the information
that is directly related to the key value of the table. The process of assembling these
logical units of information is called normalization of the database design.

The concept of normalized table design was tailored to the capabilities of the rela-
tional database. Because you could join data from different tables together in a
query, there was no need to keep all the information associated with a particular
object together in a single record. You could decompose the information into
associated units and simply join the appropriate units together when you needed
information that crossed table boundaries.

There are many different methodologies for normalizing data. The following is one
example:

Normalized Forms
In fact, there is more than one type of normalization. Each step in the normalization
process ends with a specific result called a normalized form. There are five standard
normalized forms, which are referred to as first normal form (1NF), second normal
form (2NF), and so on. The normalization process that we describe briefly in this sec-
tion results in third normal form (3NF), the most common type of normalization.

Explaining the complete concepts that lie behind the different normal forms is beyond
the scope of this chapter and book.

Data Design | 103

1. Identify the objects your application needs to know (the entities). Examples of
entities, as shown in Figure 4-3, include employees, locations, and jobs.

2. Identify the individual pieces of data, referred to by data modelers as attributes,
for these entities. In Figure 4-3, employee name and salary are attributes. Typi-
cally, entities correspond to tables and attributes correspond to columns.

3. As a potential last step in the process, identify relationships between the entities
based on your business. These relationships are implemented in the database
schema through the use of a combination known as a foreign key. For example,
the primary key of the DEPARTMENT NUMBER table would be a foreign key
column in the EMPLOYEE NAME table used to identify the DEPARTMENT
NUMBER in which an employee works. A foreign key is a type of constraint;
constraints are discussed later in this chapter.

Normalization provides benefits by avoiding storage of redundant data. Storing the
department in every employee record not only would waste space but also would
lead to a data maintenance issue. If the department name changed, you would have
to update every employee record, even though no employees had actually changed
departments. By normalizing the department data into a table and simply pointing to
the appropriate row from the employee rows, you avoid both duplication of data and
this type of problem.

Normalization also reduces the amount of data that any one row in a table contains.
The less data in a row, the less I/O is needed to retrieve it, which helps to avoid this
performance bottleneck. In addition, the smaller the size of a row, the more rows are
retrieved per data block, which increases the likelihood that more than one desired
row will be retrieved in a single I/O operation. And the smaller the row, the more
rows will be kept in Oracle’s system buffers, which also increases the likelihood that
a row will be available in memory when it’s needed, thereby avoiding the need for
any disk I/O at all.

Finally, the process of normalization includes the creation of foreign key relation-
ships and other data constraints. These relationships build a level of data integrity
directly into your database design.

Figure 4-3 shows a simple list of attributes grouped into entities and linked by a for-
eign key relationship.

Figure 4-3. The normalization process

Job name
Title

Employee number
Employee name
Hire date
Salary
Commission

Department number
Department name
Location

104 | Chapter 4: Oracle Data Structures

However, there is an even more important reason to go through the process of
designing a normalized database. You can benefit from normalization because of the
planning process that normalizing a data design entails. By really thinking about the
way the intended applications use data, you get a much clearer picture of the needs
the system is designed to serve. This understanding leads to a much more focused
database and application.

Gaining a deep understanding of the way your data will be used also helps with your
other design tasks. For instance, once you’ve completed an optimal logical database
design, you must go back and consider what indexes you should add to improve the
anticipated performance of the database and whether you should designate any
tables as part of a cluster or hash cluster.

Since adding these types of performance-enhancing data structures doesn’t affect the
logical representation of the database, you can always make these types of modifica-
tions later when you see the way an application uses the database in test mode or in
production.

Constraints
A constraint enforces certain aspects of data integrity within a database. When you
add a constraint to a particular column, Oracle automatically ensures that data vio-
lating that constraint is never accepted. If a user attempts to write data that violates a
constraint, Oracle returns an error for the offending SQL statement.

Constraints may be associated with columns when you create or add the table con-
taining the column (via a number of keywords) or after the table has been created
with the SQL command ALTER TABLE. Since Oracle8, the following constraint
types are supported:

NOT NULL
You can designate any column as NOT NULL. If any SQL operation leaves a
NULL value in a column with a NOT NULL constraint, Oracle returns an error
for the statement.

Unique
When you designate a column or set of columns as unique, users cannot add val-
ues that already exist in another row in the table for those columns, or modify
existing values to match other values in the column.

The unique constraint is implemented by the creation of an index, which
requires a unique value. If you include more than one column as part of a unique
key, you will create a single index that will include all the columns in the unique
key. If an index already exists for this purpose, Oracle will automatically use that
index.

Constraints | 105

If a column is unique but allows NULL values, any number of rows can have a
NULL value, because the NULL indicates the absence of a value. To require a
truly unique value for a column in every row, the column should be both unique
and NOT NULL.

Primary key
Each table can have, at most, a single primary key constraint. The primary key
may consist of more than one column in a table.

The primary key constraint forces each primary key to have a unique value. It
enforces both the unique constraint and the NOT NULL constraint. A primary
key constraint will create a unique index, if one doesn’t already exist for the
specified column(s).

Should You Normalize Your Data?
Whenever possible, we recommend that you go through the process of designing a nor-
malized structure for your database.

Data normalization has been proven, both theoretically and in decades of practice, to
provide concrete benefits. In addition, the process of creating a normalized data design
is intimately intertwined with the process of understanding the data requirements for
your application system. You can improve even the simplest database by the discover-
ies made during the process of normalization.

However, there may be times when you feel that the benefits of a fully normalized
design will counteract the performance penalty that a design imposes on your produc-
tion systems. For example, you may have one, two, or three contact names to be placed
in their own table, with a foreign key linking back to the main row for the organization.
But because you want to see all the contact names every time you request contact infor-
mation, you might decide to save the overhead and added development effort of the
join and simply include the three contact names in your organization table. This tech-
nique is common in decision-support/data warehousing applications.

Of course, this violation of the rules of normalization limits the flexibility of your appli-
cation systems—for example, if you later decide that you need four contact names,
some modification of every application and report that uses the contact names will be
necessary. Normalization leads to a more flexible design, which is a good thing in the
constantly changing world we live in.

For this reason, we suggest that you always implement a fully normalized database
design and then, if necessary, go back and denormalize certain tables as needed. With
this approach, you will at least have to make a conscious decision to “break” the nor-
malization, which involves an active consideration of the price of denormalization.

106 | Chapter 4: Oracle Data Structures

Foreign key
The foreign key constraint is defined for a table (known as the child) that has a
relationship with another table in the database (known as the parent). The value
entered in a foreign key must be present in a unique or primary key of another
specific table. For example, the column for a department ID in an employee
table might be a foreign key for the department ID primary key in the depart-
ment table.

A foreign key can have one or more columns, but the referenced key must have
an equal number of columns. You can have a foreign key relate to the primary
key of its own table, such as when the employee ID of a manager is a foreign key
referencing the ID column in the same table.

A foreign key can contain a NULL value if it’s not forbidden through another
constraint.

By requiring that the value for a foreign key exist in another table, the foreign
key constraint enforces referential integrity in the database. Foreign keys not
only provide a way to join related tables but also ensure that the relationship
between the two tables will have the required data integrity.

Normally, you cannot delete a row in a parent table if it causes a row in the child
table to violate a foreign key constraint. However, you can specify that a foreign
key constraint causes a cascade delete, which means that deleting a referenced
row in the parent table automatically deletes all rows in the child table that refer-
ence the primary key value in the deleted row in the parent table.

Check
A check constraint is a more general-purpose constraint. A check constraint is a
Boolean expression that evaluates to either TRUE or FALSE. If the check con-
straint evaluates to FALSE, the SQL statement that caused the result returns an
error. For example, a check constraint might require the minimum balance in a
bank account to be over $100. If a user tries to update data for that account in a
way that causes the balance to drop below this required amount, the constraint
will return an error.

Some constraints require the creation of indexes to support them. For instance, the
unique constraint creates an implicit index used to guarantee uniqueness. You can
also specify a particular index that will enforce a constraint when you define that
constraint.

All constraints can be either immediate or deferred. An immediate constraint is
enforced as soon as a write operation affects a constrained column in the table. A
deferred constraint is enforced when the SQL statement that caused the change in the
constrained column completes. Because a single SQL statement can affect several
rows, the choice between using a deferred constraint or an immediate constraint can
significantly affect how the integrity dictated by the constraint operates. You can

Triggers | 107

specify that an individual constraint is immediate or deferred, or you can set the tim-
ing for all constraints in a single transaction.

Finally, you can temporarily suspend the enforcement of constraints for a particular
table. When you enable the operation of the constraint, you can instruct Oracle to
validate all the data for the constraint or simply start applying the constraint to the
new data. When you add a constraint to an existing table, you can also specify
whether you want to check all the existing rows in the table.

Triggers
You use constraints to automatically enforce data integrity rules whenever a user
tries to write or modify a row in a table. There are times when you want to use the
same kind of timing for your own application-specific logic. Oracle includes triggers
to give you this capability.

Although you can write triggers to perform the work of a constraint,
Oracle has optimized the operation of constraints, so it’s best to
always use a constraint instead of a trigger if possible.

A trigger is a block of code that is fired whenever a particular type of database event
occurs to a table. There are three types of events that can cause a trigger to fire:

• A database UPDATE

• A database INSERT

• A database DELETE

You can, for instance, define a trigger to write a customized audit record whenever a
user changes a row.

Triggers are defined at the row level. You can specify that a trigger be fired for each
row or for the SQL statement that fires the trigger event. As with the previous discus-
sion of constraints, a single SQL statement can affect many rows, so the specification
of the trigger can have a significant effect on the operation of the trigger and the per-
formance of the database.

There are three times when a trigger can fire:

• Before the execution of the triggering event

• After the execution of the triggering event

• Instead of the triggering event

Combining the first two timing options with the row and statement versions of a
trigger gives you four possible trigger implementations: before a statement, before a
row, after a statement, and after a row.

108 | Chapter 4: Oracle Data Structures

Oracle Database 11g introduced the concept of compound triggers; with this
enhancement, a single trigger can have a section for the different timing implementa-
tions. Compound triggers help to improve performance, since the trigger has to be
loaded only once for multiple timing options.

INSTEAD OF triggers were introduced with Oracle8. The INSTEAD OF trigger has
a specific purpose: to implement data-manipulation operations on views that don’t
normally permit them, such as a view that references columns in more than one base
table for updates. You should be careful when using INSTEAD OF triggers because
of the many potential problems associated with modifying the data in the underlying
base tables of a view. There are many restrictions on when you can use INSTEAD
OF triggers. Refer to your Oracle documentation for a detailed description of the for-
bidden scenarios.

You can specify a trigger restriction for any trigger. A trigger restriction is a Boolean
expression that circumvents the execution of the trigger if it evaluates to FALSE.

Triggers are defined and stored separately from the tables that use them. Since they
contain logic, they must be written in a language with capabilities beyond those of
SQL, which is designed to access data. Oracle8 and later versions allow you to write
triggers in PL/SQL, the procedural language that has been a part of Oracle since Ver-
sion 6. Oracle8i and beyond also support Java as a procedural language, so you can
create Java triggers with those versions.

You can write a trigger directly in PL/SQL or Java, or a trigger can call an existing
stored procedure written in either language.

Triggers are fired as a result of a SQL statement that affects a row in a particular
table. It’s possible for the actions of the trigger to modify the data in the table or to
cause changes in other tables that fire their own triggers. The end result of this may
be data that ends up being changed in a way that Oracle thinks is logically illegal.
These situations can cause Oracle to return runtime errors referring to mutating
tables, which are tables modified by other triggers, or constraining tables, which are
tables modified by other constraints. Oracle8i eliminated some of the errors caused
by activating constraints with triggers.

Oracle8i also introduced a very useful set of system event triggers (sometimes called
database-level event triggers), and user event triggers (sometimes called schema-level
event triggers). For example, you can place a trigger on system events such as data-
base startup and shutdown and on user events such as logging on and logging off.

Query Optimization
All of the data structures discussed so far in this chapter are server entities. Users
request data from an Oracle server through database queries. Oracle’s query opti-
mizer must then determine the best way to access the data requested by each query.

Query Optimization | 109

One of the great virtues of a relational database is its ability to access data without
predefining the access paths to the data. When a SQL query is submitted to an Ora-
cle database, Oracle must decide how to access the data. The process of making this
decision is called query optimization, because Oracle looks for the optimal way to
retrieve the data. This retrieval is known as the execution path. The trick behind
query optimization is to choose the most efficient way to get the data, since there
may be many different options available.

For instance, even with a query that involves only a single table, Oracle can take
either of these approaches:

• Use an index to find the ROWIDs of the requested rows and then retrieve those
rows from the table.

• Scan the table to find and retrieve the rows; this is referred to as a full table scan.

Although it’s usually much faster to retrieve data using an index, the process of get-
ting the values from the index involves an additional I/O step in processing the
query. Query optimization may be as simple as determining whether the query
involves selection conditions that can be imposed on values in the index. Using the
index values to select the desired rows involves less I/O and is therefore more effi-
cient than retrieving all the data from the table and then imposing the selection
conditions.

Another factor in determining the optimal query execution plan is whether there is
an ORDER BY condition in the query that can be automatically implemented by the
presorted index. Alternatively, if the table is small enough, the optimizer may decide
to simply read all the blocks of the table and bypass the index since it estimates the
cost of the index I/O plus the table I/O to be higher than just the table I/O.

The query optimizer has to make some key decisions even with a query on a single
table. When a more involved query is submitted, such as one involving many tables
that must be joined together efficiently or one that has complex selection criteria and
multiple levels of sorting, the query optimizer has a much more complex task.

Prior to Oracle Database 10g, you could choose between two different Oracle query
optimizers, a rule-based optimizer and a cost-based optimizer; these are described in
the following sections. With Oracle Database 10g, the rule-based optimizer is desup-
ported. The references to syntax and operations for the rule-based optimizer in the
following sections are provided for reference and are applicable only if you are run-
ning an older release of Oracle.

Rule-Based Optimization
Oracle has always had a query optimizer, but until Oracle7 the optimizer was only
rule-based. The rule-based optimizer, as the name implies, uses a set of predefined
rules as the main determinant of query optimization decisions. Since the rule-based

110 | Chapter 4: Oracle Data Structures

optimizer has been desupported as of Oracle Database 10g, your interest in this topic
is likely be limited to supporting old Oracle databases where this choice may have
been made.

Rule-based optimization sometimes provided better performance than the early
versions of Oracle’s cost-based optimizer for specific situations. The rule-based opti-
mizer had several weaknesses, including offering only a simplistic set of rules. The
Oracle rule-based optimizer had about 20 rules and assigned a weight to each one of
them. In a complex database, a query can easily involve several tables, each with sev-
eral indexes and complex selection conditions and ordering. This complexity means
that there were a lot of options, and the simple set of rules used by the rule-based
optimizer might not differentiate the choices well enough to make the best choice.

The rule-based optimizer assigned an optimization score to each potential execution
path and then took the path with the best optimization score. Another weakness in
the rule-based optimizer was resolution of optimization choices made in the event of
a “tie” score. When two paths presented the same optimization score, the rule-based
optimizer looked to the syntax of the SQL statement to resolve the tie. The winning
execution path was based on the order in which the tables occur in the SQL
statement.

You can understand the potential impact of this type of tie-breaker by looking at a
simple situation in which a small table with 10 rows, SMALLTAB, is joined to a large
table with 10,000 rows, LARGETAB, as shown in Figure 4-4. If the optimizer chose
to read SMALLTAB first, the Oracle database will read the 10 rows and then read
LARGETAB to find the matching rows for each of the 10 rows. If the optimizer chose
to read LARGETAB first, the database read 10,000 rows from LARGETAB and then
read SMALLTAB 10,000 times to find the matching rows. Of course, the rows in
SMALLTAB would probably be cached, reducing the impact of each probe, but you
could see a dramatic difference in performance.

Differences like this could occur with the rule-based optimizer as a result of the
ordering of the table names in the query. In the previous situation the rule-based
optimizer returned the same results for the query, but it used widely varying amounts
of resources to retrieve those results.

Cost-Based Optimization
To improve the optimization of SQL statements, Oracle introduced the cost-based
optimizer in Oracle7. As the name implies, the cost-based optimizer does more than
simply look at a set of optimization rules; instead, it selects the execution path that
requires the least number of logical I/O operations. This approach avoids the error

Query Optimization | 111

discussed in the previous section. After all, the cost-based optimizer would know
which table was bigger and would select the right table to begin the query, regard-
less of the syntax of the SQL statement.

Oracle8 and later versions, by default, use the cost-based optimizer to identify the
optimal execution plan. And, since Oracle Database 10g, the cost-based optimizer is
the only supported optimizer. To properly evaluate the cost of any particular execu-
tion plan, the cost-based optimizer uses statistics about the composition of the
relevant data structures. These statistics are automatically gathered by default since
the Oracle Database 10g release into the Automatic Workload Repository (AWR).
Among the statistics gathered in the AWR are database segment access and usage
statistics, time model statistics, system and session statistics, SQL statements that
produce the greatest loads, and Active Session History (ASH) statistics.

How statistics are used

The cost-based optimizer finds the optimal execution plan by assigning an optimiza-
tion score for each of the potential execution plans using its own internal rules and
logic along with statistics that reflect the state of the data structures in the database.
These statistics relate to the tables, columns, and indexes involved in the execution
plan. The statistics for each type of data structure are listed in Table 4-1.

Figure 4-4. The effect of optimization choices

1 logical I/O
per join

LARGETAB

SMALLTAB

LARGETAB

SMALLTAB

1 logical I/O
per join

10 logical I/Os

10,000 logical I/Os

Total

20 logical I/Os

Total

20,000 logical I/Os

112 | Chapter 4: Oracle Data Structures

Oracle Database 10g and more current database releases also collect overall system sta-
tistics, including I/O and CPU performance and utilization. These statistics are stored in
the data dictionary, described in this chapter’s final section, “Data Dictionary Tables.”

You can see that these statistics can be used individually and in combination to
determine the overall cost of the I/O required by an execution plan. The statistics
reflect both the size of a table and the amount of unused space within the blocks; this
space can, in turn, affect how many I/O operations are needed to retrieve rows. The
index statistics reflect not only the depth and breadth of the index tree, but also the
uniqueness of the values in the tree, which can affect the ease with which values can
be selected using the index.

The accuracy of the cost-based optimizer depends on the accuracy of
the statistics it uses, so updating statistics has always been a must.
Formerly, you would have used the SQL statement ANALYZE to com-
pute or estimate these statistics. When managing an older release,
many database administrators also used a built-in PL/SQL package,
DBMS_STATS, that contains a number of procedures that helped
automate the process of collecting statistics.

Stale statistics can lead to database performance problems, which is why
database statistics gathering has been automated by Oracle. This statis-
tics gathering can be quite granular. For example, as of Oracle Database
10g, you can enable automatic statistics collection for a table, which can
be based on whether a table is either stale (which means that more than
10 percent of the objects in the table have changed) or empty.

Table 4-1. Database statistics

Data structure Type of statistics

Table Number of rows

Number of blocks

Number of unused blocks

Average available free space per block

Number of chained rows

Average row length

Column Number of distinct values per column

Second-lowest column value

Second-highest column value

Column density factor

Index Depth of index B*-tree structure

Number of leaf blocks

Number of distinct values

Average number of leaf blocks per key

Average number of data blocks per key

Clustering factor

Query Optimization | 113

The use of statistics makes it possible for the cost-based optimizer to make a much
more well-informed choice of the optimal execution plan. For instance, the opti-
mizer could be trying to decide between two indexes to use in an execution plan that
involves a selection based on a value in either index. The rule-based optimizer might
very well rate both indexes equally and resort to the order in which they appear in
the WHERE clause to choose an execution plan. The cost-based optimizer, how-
ever, knows that one index contains 1,000 entries while the other contains 10,000
entries. It even knows that the index that contains 1,000 values contains only 20
unique values, while the index that contains 10,000 values has 5,000 unique values.
The selectivity offered by the larger index is much greater, so that index will be
assigned a better optimization score and used for the query.

In Oracle9i, you have the option of allowing the cost-based optimizer to use CPU
speed as one of the factors in determining the optimal execution plan. An initializa-
tion parameter turns this feature on and off. As of Oracle Database 10g, the default
cost basis is calculated on the CPU cost plus the I/O cost for a plan.

Even with all the information available to it, the cost-based optimizer did have some
noticeable initial flaws. Aside from the fact that it (like all software) occasionally had
bugs, the cost-based optimizer used statistics that didn’t provide a complete picture
of the data structures. In the previous example, the only thing the statistics tell the opti-
mizer about the indexes is the number of distinct values in each index. They don’t reveal
anything about the distribution of those values. For instance, the larger index can con-
tain 5,000 unique values, but these values can each represent two rows in the associated
table, or one index value can represent 5,001 rows while the rest of the index values rep-
resent a single row. The selectivity of the index can vary wildly, depending on the value
used in the selection criteria of the SQL statement. Fortunately, Oracle 7.3 introduced
support for collecting histogram statistics for indexes to address this exact problem. You
could create histograms using syntax within the ANALYZE INDEX command when
you gathered statistics yourself in Oracle versions prior to Oracle Database 10g. This
syntax is described in your Oracle SQL reference documentation.

Testing the Effect of New Statistics
There may be times when you don’t want to update your statistics, such as when the
distribution of data in your database has reached a steady state or when your queries
are already performing optimally (or at least deliver adequate, consistent perfor-
mance). Oracle gives you a way you can try out a new set of statistics to see if they
might make things better while still maintaining the option of returning to the old set:
you can save your statistics in a separate table and then collect new ones. If, after test-
ing your application with these new statistics, you decide you preferred the way the old
statistics worked, you can simply reload the saved statistics.

114 | Chapter 4: Oracle Data Structures

Influencing the cost-based optimizer

There are two ways you can influence the way the cost-based optimizer selects an
execution plan. The first way is by setting the OPTIMIZER_MODE initialization
parameter. ALL_ROWS is the default setting for OPTIMIZER_MODE enabling
optimization with the goal of best throughput. FIRST_ROWS optimizes plans for
returning the first set of rows from a SQL statement. You can specify the number of
rows using this parameter. The optimizer mode tilts the evaluation of optimization
scores slightly and, in some cases, may result in a different execution plan.

Oracle also gives you a way to influence the decisions of the optimizer with a tech-
nique called hints. A hint is nothing more than a comment with a specific format
inside a SQL statement. Hints can be categorized as follows:

• Optimizer SQL hints for changing the query optimizer goal

• Full table scan hints

• Index unique scan hints

• Index range scan descending hints

• Fast full index scan hints

• Join hints, including index joins, nested loop joins, hash joins, sort merge joins,
Cartesian joins, and join order

• Other optimizer hints, including access paths, query transformations, and paral-
lel execution

Hints come with their own set of problems. A hint looks just like a comment, as
shown in this extremely simple SQL statement. Here, the hint forces the optimizer to
use the EMP_IDX index for the EMP table:

SELECT /*+ INDEX(EMP_IDX) */ LASTNAME, FIRSTNAME, PHONE FROM EMP

If a hint isn’t in the right place in the SQL statement, if the hint keyword is mis-
spelled, or if you change the name of a data structure so that the hint no longer refers
to an existing structure, the hint will simply be ignored, just as a comment would be.
Because hints are embedded into SQL statements, repairing them can be quite frus-
trating and time-consuming if they aren’t working properly. In addition, if you add a
hint to a SQL statement to address a problem caused by a bug in the cost-based opti-
mizer and the cost-based optimizer is subsequently fixed, the SQL statement will still
not use the corrected (and potentially improved) optimizer.

However, hints do have a place—for example, when a developer has a user-defined
datatype that suggests a particular type of access. The optimizer cannot anticipate
the effect of user-defined datatypes, but a hint can properly enable the appropriate
retrieval path.

For more details about when hints might be considered, see the sidebar “Accepting
the Verdict of the Optimizer” later in this chapter.

Query Optimization | 115

Specifying an Optimizer Mode
In the previous section we mentioned two optimizer modes: ALL_ROWS and
FIRST_ROWS. Two other optimizer modes for Oracle versions prior to Oracle Data-
base 10g were:

RULE
Forces the use of the rule-based optimizer

CHOOSE
Allowed Oracle to choose whether to use the cost-based optimizer or the rule-
based optimizer

With an optimizer mode of CHOOSE, which previously was the default setting, Ora-
cle would use the cost-based optimizer if any of the tables in the SQL statement have
statistics associated with them. The cost-based optimizer would make a statistical
estimate for the tables that lacked statistics. If you are running an older Oracle
release using rules, you probably wonder if moving to a newer release with only cost-
based optimizer support is a good idea. Let’s have a closer look at the advantages of
the cost-based optimizer.

Newer database releases and the cost-based optimizer

The cost-based optimizer makes decisions with a wider range of knowledge about
the data structures in the database. Although the cost-based optimizer isn’t flawless
in its decision-making process, it does make more accurate decisions based on its
wider base of information, especially because it has matured since its introduction in
Oracle7 and has improved with each new release.

The cost-based optimizer also takes into account improvements and new features in
the Oracle database as they are released. For instance, the cost-based optimizer
understands the impact that partitioned tables have on the selection of an execution
plan, while the rule-based optimizer did not. The cost-based optimizer optimizes
execution plans for star schema queries, heavily used in data warehousing, while the
rule-based optimizer has not been enhanced to deal effectively with these types of
queries or leverage many other such business intelligence query features.

Oracle Corporation was quite frank about its intention to make the cost-based opti-
mizer the optimizer for the Oracle database through a period of years when both
optimizer types were supported. In fact, since Oracle Database 10g, the rule-based
optimizer is no longer supported.

We will remind you of one fact of database design at this point. As good as the cost-
based optimizer is today, it is not a magic potion that remedies problems brought on
by a poor database and application design or a badly selected hardware and storage
platform. When performance problems occur today, they are most often due to bad
design and deployment choices.

116 | Chapter 4: Oracle Data Structures

Accepting the Verdict of the Optimizer
Some of you may doubt the effectiveness of Oracle query optimization if you are on an
old Oracle database release, especially prior to Oracle Database 10g where tuning often
required running scripts. You may have seen cases in which the query optimizer chose
an incorrect execution path that resulted in poor performance. You may feel that you
have a better understanding of the structure and use of the database than the query
optimizer. For these reasons, you might look to hints to force the acceptance of the exe-
cution path you feel is correct.

We recommend using the query optimizer for all of your queries rather than using
hints. Although the Oracle developers who wrote the query optimizer had no knowl-
edge of your particular database, they did depend on a lot of customer feedback,
experience, and knowledge of how Oracle processes queries during the creation of the
query optimizer. They designed the cost-based optimizer to efficiently execute all types
of queries that may be submitted to the Oracle database.

In addition, there are three advantages that the query optimizer has over your discre-
tion in all cases:

• The optimizer sees the structure of the entire database. Many Oracle databases
support a variety of applications and users and it’s quite possible that your
system shares data with other systems, making the overall structure and compo-
sition of the data somewhat out of your control. In addition, you probably
designed and tested your systems in a limited environment, so your idea of the
optimal execution path may not match the reality of the production environ-
ment, especially as it evolves.

• The optimizer has a dynamically changing view of the database and its data. The
statistics used by the cost-based optimizer can change with each automated col-
lection. In addition to the changing statistical conditions, the internal workings
of the optimizer are occasionally changed to accommodate changes in the way
the Oracle database operates. Since Oracle9i, the cost-based optimizer takes into
account the speed of the CPU, and since Oracle Database 10g leverages statis-
tics on I/O. If you force the selection of a particular query plan with a hint, you
might not benefit from changes in Oracle.

• A bad choice by the optimizer may be a sign that something is amiss in your
database. For the most part, the query optimizer selects the optimal execution
path. What may be seen as a mistake by the query optimizer can, in reality, be
traced to a misconception about the database and its design or to an improper
implementation. A mistake is always an opportunity to learn, and you should
always take advantage of any opportunity to increase your overall understand-
ing of how Oracle and its optimizer work.

—continued—

Query Optimization | 117

Saving the Optimization
There may be times when you want to prevent the optimizer from calculating a new
plan whenever a SQL statement is submitted. For example, you might do this if
you’ve finally reached a point at which you feel the SQL is running optimally, and
you don’t want the plan to change regardless of future changes to the optimizer or
the database.

Starting with Oracle8i, you could create a stored outline that stored the attributes
used by the optimizer to create an execution plan. Once you had a stored outline, the
optimizer simply used the stored attributes to create an execution plan. As of
Oracle9i, you could also edit the hints that were in the stored outline.

With the release of Oracle Database 11g, Oracle suggests that you move your stored
outlines to SQL plan baselines. Now, in addition to manually loading plans, Oracle
can be set to automatically capture plan histories into these SQL plan baselines.
Included in this gathered history is the SQL text, outline, bind variables, and compi-
lation environment. When a SQL statement is compiled, Oracle will first use the
cost-based optimizer to generate a plan and will evaluate any matching SQL plan
baselines for relative cost, choosing the plan with the lowest cost.

Comparing Optimizations
Oracle makes changes to the optimizer in every release. These changes are meant to
improve the overall quality of the decisions the optimizer makes, but a generally
improved optimizer could still create an execution plan for any particular SQL state-
ment that could result in a decrease in performance.

The SQL*Analyzer tool is designed to give you the ability to recognize potential
problems caused by optimizer upgrades. This tool compares the execution plans for
the SQL statements in your application, flagging the ones in which the plans differ.

We recommend that you consider using hints only when you have determined them to
be absolutely necessary by thoroughly investigating the causes for an optimization
problem. The hint syntax was included in Oracle syntax as a way to handle exceptional
situations, rather than to allow you to circumvent the query optimizer. If you’ve found
a performance anomaly and further investigation has led to the discovery that the
query optimizer is choosing an incorrect execution path, then and only then should
you assign a hint to a query.

Even in this situation, we recommend that you keep an eye on the hinted query in a
production environment to make sure that the forced execution path is still working
optimally.

118 | Chapter 4: Oracle Data Structures

Once these statements are identified, SQL*Analyzer executes the SQL in each envi-
ronment and provides feedback on the performance and resource utilization for
each. Although SQL*Analyzer cannot avoid potential problems brought on by opti-
mizer upgrades, the tool can definitely simplify an otherwise complex testing task.

Oracle Database 11g also includes a feature called Database Replay. This feature
captures workloads from production systems and allows them to be run on test
systems. With this capability, you can test actual production scenarios against new
configurations or versions of the database, and Database Replay will spot areas of
potential performance problems on the changed platform.

Performance and Optimization
The purpose of the optimizer is to select the best execution plan for your queries. But
there is a lot more to optimizing the overall performance of your database. Oracle
performance is the subject of Chapter 7 of this book.

Understanding the Execution Plan
Oracle’s query optimizer automatically selects an execution plan for each query
submitted. By and large, although the optimizer does a good job of selecting the exe-
cution plan, there may be times when the performance of the database suggests that
it is using a less-than-optimal execution plan.

The only way you can really tell what path is being selected by the optimizer is to see
the layout of the execution plan. You can use two Oracle character-mode utilities to
examine the execution plan chosen by the Oracle optimizer. These tools allow you to
see the successive steps used by Oracle to collect, select, and return the data to the
user.

The first utility is the SQL EXPLAIN PLAN statement. When you use EXPLAIN
PLAN, followed by the keyword FOR and the SQL statement whose execution plan
you want to view, the Oracle cost-based optimizer returns a description of the execu-
tion plan it will use for the SQL statement and inserts this description into a database
table. You can subsequently run a query on that table to get the execution plan, as
shown in SQL*Plus in Figure 4-5.

The execution plan is presented as a series of rows in the table, one for each step
taken by Oracle in the process of executing the SQL statement. The optimizer also
includes some of the information related to its decisions, such as the overall cost of
each step and some of the statistics that it used to make its decisions.

The optimizer writes all of this information to a table in the database. By default, the
optimizer uses a table called PLAN_TABLE; make sure the table exists before you
use EXPLAIN PLAN. (The utlxplan.sql script included with your Oracle database

Understanding the Execution Plan | 119

creates the default PLAN_TABLE table.) You can specify that EXPLAIN PLAN uses
a table other than PLAN_TABLE in the syntax of the statement. For more informa-
tion about the use of EXPLAIN PLAN, please refer to your Oracle documentation.

There are times when you want to examine the execution plan for a single state-
ment. In such cases, the EXPLAIN PLAN syntax is appropriate. There are other
times when you want to look at the plans for a group of SQL statements. For these
situations, you can set up a trace for the statements you want to examine and then
use the second utility, TKPROF, to give you the results of the trace in a more read-
able format in a separate file. At other times, you might also use Oracle’s SQL Trace
facility to generate a file containing the SQL generated when using TKPROF in tun-
ing applications.

You must use the EXPLAIN keyword when you start TKPROF, as this will instruct
the utility to execute an EXPLAIN PLAN statement for each SQL statement in the
trace file. You can also specify how the results delivered by TKPROF are sorted. For
instance, you can have the SQL statements sorted on the basis of the physical I/Os
they used; the elapsed time spent on parsing, executing, or fetching the rows; or the
total number of rows affected.

The TKPROF utility uses a trace file as its raw material. Trace files are created for
individual sessions. You can start collecting a trace file either by running the target
application with a switch (if it’s written with an Oracle product such as Developer)
or by explicitly turning it on with an EXEC SQL call or an ALTER SESSION SQL
statement in an application written with a 3GL. The trace process, as you can proba-
bly guess, can significantly affect the performance of an application, so you should
turn it on only when you have some specific diagnostic work to do.

Figure 4-5. Results of a simple EXPLAIN PLAN statement in SQL*Plus

SQL> EXPLAIN PLAN FOR
 2 SELECT DNAME, ENAME FROM EMP, DEPT
 3 WHERE EMP.DEPTNO = DEPT.DEPTNO
 4 ORDER BY DNAME;

Explained.

SQL> SELECT OBJECT_NAME, OPERATION, OPTIONS FROM PLAN_TABLE ORDER BY ID;

OBJECT_NAME OPERATION OPTIONS
------------------------------ ------------------------------ --------------------------
 SELECT STATEMENT
 SORT ORDER BY
 NESTED LOOPS
EMP TABLE ACCESS FULL
DEPT TABLE ACCESS BY INDEX ROWID
SYS_C004911 INDEX UNIQUE SCAN

6 rows selected.

120 | Chapter 4: Oracle Data Structures

You can also view the execution plan through Enterprise Manager for the SQL state-
ments that use the most resources. Tuning your SQL statements isn’t a trivial task,
but with the EXPLAIN PLAN and TKPROF utilities you can get to the bottom of the
decisions made by the cost-based optimizer. It takes a bit of work to understand
exactly how to read an execution plan, but it’s better to have access to this type of
information than not. In large-scale system-development projects, it’s quite common
for developers to submit EXPLAIN PLANs for the SQL they’re writing to a DBA as a
formal step toward completing a form or report. While time-consuming, this is the
best way to ensure that your SQL is tuned before going into production.

SQL Advisors
Oracle Database 10g added a tool called the SQL Tuning Advisor. This tool per-
forms advanced optimization analysis on selected SQL statements, using workloads
that have been automatically collected into the Automatic Workload Repository or
that you have specified yourself. Once the optimization is done, the SQL Tuning
Advisor makes recommendations, which could include updating statistics, adding
indexes, or creating a SQL profile. This profile is stored in the database and is used as
the optimization plan for future executions of the statement, which allows you to
“fix” errant SQL plans without having to touch the underlying SQL.

The tool is often used along with the SQL Access Advisor since that tool provides
advice on materialized views and indexes. Oracle Database 11g introduces a SQL
Advisor tool that combines functions of the SQL Tuning Advisor and the SQL
Access Advisor (and now includes a new Partition Advisor). The Partition Advisor
component advises on how to partition tables, materialized views, and indexes in
order to improve SQL performance.

Data Dictionary Tables
The main purpose of the Oracle data dictionary is to store data that describes the
structure of the objects in the Oracle database. Because of this purpose, there are
many views in the Oracle data dictionary that provide information about the
attributes and composition of the data structures within the database.

All of the views listed in this section actually have three varieties, which are identi-
fied by their prefixes:

DBA_
Includes all the objects in the database. A user must have DBA privileges to use
this view.

USER_
Includes only the objects in the user’s own database schema.

Data Dictionary Tables | 121

ALL_
Includes all the objects in the database to which a particular user has access. If a
user has been granted rights to objects in another user’s schema, these objects
will appear in this view.

This means that, for instance, there are three views that relate to tables: DBA_
TABLES, USER_TABLES, and ALL_TABLES.

Some of the more common views that directly relate to the data structures are
described in Table 4-2.

Table 4-2. Data dictionary views about data structures

Data dictionary view Type of information

ALL_TABLES Information about the object and relational tables

TABLES Information about the relational tables

TAB_COMMENTS Comments about the table structures

TAB_HISTOGRAMS Statistics about the use of tables

TAB_PARTITIONS Information about the partitions in a partitioned table

TAB_PRIVS* Different views detailing all the privileges on a table, the privileges granted by the user, and the
privileges granted to the user

TAB_COLUMNS Information about the columns in tables and views

COL_COMMENTS Comments about individual columns

COL_PRIVS* Different views detailing all the privileges on a column, the privileges granted by the user, and the
privileges granted to the user

LOBS Information about large object (LOB) datatype columns

VIEWS Information about views

INDEXES Information about the indexes on tables

IND_COLUMNS Information about the columns in each index

IND_PARTITIONS Information about each partition in a partitioned index

PART_* Different views detailing the composition and usage patterns for partitioned tables and indexes

CONS_COLUMNS Information about the columns in each constraint

CONSTRAINTS Information about constraints on tables

SEQUENCES Information about sequence objects

SYNONYMS Information about synonyms

TAB_COL_STATISTICS Statistics used by the cost-based analyzer

TRIGGERS Information about the triggers on tables

TRIGGER_COLS Information about the columns in triggers

122

Chapter 5CHAPTER 5

Managing Oracle 5

Many Oracle users and developers are not actively aware of the system and database
management activities that go on around them. But effective management is vital to
providing a reliable, available, and secure platform that delivers optimal perfor-
mance. This chapter focuses on how you can manage Oracle to ensure these virtues
for your environment.

Much of the management responsibility usually falls upon the database administrator.
Users and developers of Oracle also need to be aware of some of the techniques
described here. The DBA is typically responsible for the following management tasks:

• Installing and upgrading the database and options

• Creating tables and indexes

• Creating and managing tablespaces

• Managing control files, online redo logs, archived redo logs, job queues, and
server processes

• Creating, monitoring, and tuning data-loading procedures

• Adding users and groups and implementing security procedures

• Implementing backup, recovery, information lifecycle management, and high
availability plans

• Monitoring database performance and exceptions

• Reorganizing and tuning the database

• Troubleshooting database problems

• Coordinating with Oracle Worldwide Customer Support Services

Particularly in smaller companies, DBAs are also often called upon to take part in
database schema design and security planning. DBAs in large enterprises may also
help set up replication strategies, disaster and high-availability strategies, hierarchical
storage management procedures, and the linking of database event monitoring (e.g.,
specific database tasks and status) into enterprise network monitors.

Managing Oracle | 123

Oracle’s feature list has grown with each database release. Yet managing Oracle can be
much less labor-intensive today than it was in the past. While database releases
highlighted in early editions of this book described the novelty of an easier-to-use man-
agement interface, producing better versions of Oracle Enterprise Manager (EM) was
only part of the effort to simplify management underway within Oracle Server Devel-
opment. The database itself has now become more self-tuning and self-managing.

Initially, this effort was focused mostly on better management of single instances of
the Oracle database. Oracle Database 10g expanded its capabilities with a focus on
grid computing. Grid computing highlighted the need for effective management of
scores of computers and database instances.

Manageability of a grid must take into account disk virtualization, resource pooling,
provisioning of computer resources, dynamic workload management, and dynamic
control of changing grid components. Oracle’s grid initiative resulted in many signifi-
cant changes in managing the database geared toward significantly reducing this
complexity. While targeted at simplifying grid management, most of these improve-
ments also provide great impact in simplifying management of more traditional
Oracle database implementations.

As a consequence of the grid initiative and self-tuning and self-
managing initiatives, readers of early editions of this book will find a
large number of management changes in this chapter and in others
throughout this book.

All of the tasks we’ve just described come under the heading of managing the data-
base. Many of the provisioning duties, including installation, initial configuration,
and cloning, are discussed in Chapter 3. Security issues are discussed in Chapter 6.
This chapter explores the following aspects of managing Oracle:

• Using Oracle Enterprise Manager, which provides an easy-to-use interface and
underlying framework for many database-management tasks, including new
database capabilities

• Managing database fragmentation, which can affect database performance

• Performing backup and recovery operations and information lifecycle manage-
ment, which are the foundation of database integrity protection

• Working with Oracle Support

In subsequent chapters, we’ll cover other related topics in more depth, including
security, performance, and high availability. You will need an understanding of all of
these areas as you plan and implement effective management strategies for your Ora-
cle database environment.

124 | Chapter 5: Managing Oracle

Manageability Features
Oracle Database 10g and its “Intelligent Infrastructure” was a huge step forward in
simplifying management of the Oracle database. Many manual steps needed to
manage database releases previous to Oracle Database 10g were eliminated. Oracle
Database 11g introduced still more self-tuning and self-management features. Key
maintenance tasks are automated, including optimizer statistics gathering, the
Segment Advisor, and the SQL Tuning Advisor. Management of the entire infrastruc-
ture is accomplished through self-managing capabilities within the database and
through Oracle Enterprise Manager.

Statistics containing active session history are now gathered and populate the Auto-
matic Workload Repository (AWR). The Automatic Database Diagnostic Monitor
(ADDM) automatically tracks changes in database performance leveraging the data
in the AWR. Server-generated alerts occur “just-in-time” and appear in Enterprise
Manager. Resolving system utilization problems can be as simple as reviewing the
alerts and accepting the recommendations. This is in sharp contrast to steps typi-
cally taken prior to Oracle Database 10g that included actively watching for events,
exploring V$ tables, identifying related SQL, and then figuring out the needed steps
to resolve the problem.

Database Advisors
ADDM is one of several advisors present in Oracle and accessible using Enterprise
Manager today. Other performance related advisors include:

SQL Advisor
Oracle Database 11g includes the SQL Tuning Advisor, SQL Access Advisor,
and Partition Advisor. The SQL Tuning Advisor analyzes SQL statements and
makes SQL improvement recommendations. The SQL Access Advisor and Parti-
tioning Advisor recommend when to create indexes, materialized views, or
partitioned tables.

SQL Performance Impact Advisor
Introduced in Oracle Database 11g, this advisor enables you to forecast how a
system change will impact SQL performance.

Memory Advisors
The Memory Advisor is an expert system that provides automatic memory man-
agement and eliminates manual adjustment of the SGA and PGA when enabled
(and recommended in Oracle Database 11g). If just automatic shared memory is
enabled instead, you will have access to the Shared Pool (SGA) Advisor and PGA
Advisor. Finally, if you are manually managing shared memory, you will have
access to the Shared Pool (SGA) Advisor, Buffer Cache Advisor, and PGA Advisor.

Manageability Features | 125

Segment Advisor
Use of the Segment Advisor eliminates the need to identify fragmented objects
and reorganize the objects using scripts. The Segment Advisor advises which
objects to shrink and allows you to simply accept the recommendations. You
might also use this information in capacity planning.

Undo Advisor
The Undo Advisor helps size the undo tablespace and can be used to set the low
threshold of undo retention for Flashback. Oracle Database 11g features auto-
matic undo management.

MTTR Advisor
The Mean Time to Recovery (MTTR) Advisor provides guidance regarding the
impact of MTTR settings and physical writes. The mean time for recovery from a
system failure is specified based on business needs by the database administra-
tor using Enterprise Manager, and then needed reconfiguration of Oracle
components automatically takes place.

Streams Tuning Advisor
The Streams Tuning Advisor reports on throughput and latency for a Streams
topology among Oracle databases and can identify bottlenecks.

Another class of advisors introduced in Oracle Database 11g can be used to resolve
database issues. When critical errors are detected, the fault diagnosability infrastruc-
ture for Oracle Database 11g can perform a deeper analysis called a health check
using a Health Monitor. The advisors leverage diagnostic data including database
traces, the alert log, Health Monitor reports, and other diagnostic information stored
in the Automatic Diagnostic Repository (ADR). The infrastructure also includes a
SQL Test Case Builder used for reproducing the problem and transmitting the infor-
mation to Oracle Support. The advisors in this infrastructure include:

SQL Repair Advisor
If a SQL statement fails with a critical error, the SQL Repair Advisor will ana-
lyze the statement and recommend a patch to repair it.

Data Recovery Advisor
The Data Recovery Advisor is used in recovering from corrupted blocks, cor-
rupted or missing files, and other data failures and is integrated with database
health checks and RMAN.

Automatic Storage Management
Oracle Database 10g introduced Automatic Storage Management (ASM). ASM pro-
vides a file system and volume manager in the database, enabling automated striping
of files and automating mirroring of database extents. DBAs simply define a pool of

126 | Chapter 5: Managing Oracle

storage or disk group and manage the disk group through EM. Disk groups are
created with normal redundancy as the default (2-way mirroring). You can also create
disk groups with high redundancy (3-way mirroring) or external redundancy (no
mirroring). Failure groups are ASM disks that share a common failure point, so mir-
roring will automatically occur to a different failure group to provide high availability.

Oracle manages the files that are stored in ASM disk groups. ASM can manage Ora-
cle datafiles, logfiles, control files, archive logs, and RMAN/backup sets. Workloads
can be dynamically rebalanced as storage is reconfigured such that when storage is
added or removed from the pool, data can be redistributed in the background.

Oracle Enterprise Manager
Oracle Enterprise Manager was first distributed with Oracle7 and was designed for
simplifying database management. Early EM versions required Windows-based
workstations as client machines. A Java applet browser-based EM console appeared
with the Oracle8i database release. The HTML-based console was introduced with
Oracle9i products, including the Oracle Application Server, and is now the basis for
Enterprise Manager included with the database. As of Oracle Database 11g, the Java
applet console is no longer available.

Today, EM is far more than just a database management interface. EM has many
optional packs that extend its ability to manage not only Oracle databases but also
other infrastructure components commonly present. These packs include:

Database Management Packs
Diagnostics, Tuning, Change Management, Configuration Management,
Provisioning

Standalone Management Packs
Provisioning, Service Level Management

Application Management Packs
E-Business Suite, PeopleSoft Enterprise, Siebel

Middleware (Oracle Application Server) Management Packs
Diagnostics, Configuration Management, Identity Management, Provisioning,
SOA Management

Management Connectors
Microsoft Operations Manager, Remedy Helpdesk

Operating System Management Packs
Oracle Linux

System Monitoring Plug-ins
EMC Celerra, EMC Symmetrix DMX, NetApp Filer, BEA WebLogic, JBoss
Application Server, IBM WebSphere, IBM WebSphere MQ, IBM DB2, Microsoft
IIS Server, Microsoft Active Directory, Microsoft BizTalk Server, Microsoft

Oracle Enterprise Manager | 127

Commerce Server, Microsoft ISA Server, Microsoft .NET framework, Microsoft
SQL Server, Check Point Firewall, Juniper Netscreeen Firewall, F5 BigIP Local
Traffic Manager, Linux Hosts, Unix Hosts, Windows Hosts

Since our primary focus in this book is on the Oracle’s database, we’ll focus on EM’s
role in such management. Taking a closer look at the Database Management Packs,
the functionality provided by each is as follows:

Database Diagnostics Pack
Provides automatic performance diagnostics by leveraging ADDM, the AWR,
monitoring templates, and advanced event notification and alerting

Database Tuning Pack
Provides the statistics, SQL profiling, access path, and SQL structure analysis
leveraged by the SQL Tuning Advisor and includes the SQL Access Advisor and
Object Reorganization Wizard

Database Change Management Pack
Provides capture and version baselines, database object and data copying, and
object definition updates

Database Configuration Management Pack
Provides system inventory collection and reporting, configuration comparisons
and history, policy manager, and critical patch advisor

Database Provisioning Pack
Provides automated patching, cloning, provisioning, and single instance to RAC
conversion

Enterprise Manager Architecture
Enterprise Manager can be used for management tasks locally, remotely, and/or
through firewalls. Individual consoles can manage single databases or multiple
databases. Where EM is managing Oracle deployed on a cluster of computers, it is
sometimes referenced as Grid Control.

The home page for Grid Control lists the software being managed and provides a
high-level view of the status of Grid components. You can drill from Grid Control
into the consoles for individual databases, application servers, and other targets.
Figure 5-1 illustrates a typical Grid Control home page.

The Enterprise Manager architecture includes the following components:

Oracle Management Agents
These agents monitor targets for health, status, and performance. Agents auto-
matically discover all Oracle components and also report back other relevant
hardware and software configuration information to EM via HTTP/HTTPS.
Each monitored Oracle instance has its own agent.

128 | Chapter 5: Managing Oracle

Enterprise Manager Console
The console allows you to view the status of all monitored components and pro-
vides management and diagnostic tools.

Oracle Management Service (OMS)
Receives information from Oracle Management Agents and stores it in the Ora-
cle Management Repository. A local version of OMS services Management
Repositories on each local database. The OMS is a J2EE Web application that
also renders the Grid Control console user interface at the central location.

Oracle Management Repository
Enterprise Manager accesses this repository of health, status, and performance
data. A repository is automatically installed on each local database to service
each local Enterprise Manager Database Control console. Oracle Grid Control
accesses a central Oracle Management Repository serviced by a central OMS and
central Oracle Management Agent.

The EM architecture is shown in Figure 5-2.

Management Agents are available for the wide variety of operating systems on which
the Oracle database is available and are responsible for automatic service discovery,
event monitoring, and job (predefined task) execution. Management Agents can also
send Simple Network Management Protocol (SNMP) traps to database performance
monitors in other system monitoring tools.

Figure 5-1. Typical Grid Control home page

Oracle Enterprise Manager | 129

Oracle Enterprise Manager Consoles
EM’s popularity grew as deployment of the Oracle database expanded within com-
panies to multiple operating systems and as additional Oracle software components
were added to the mix. EM provides a common interface to managing all of these
environments, something that DBA scripts were not always designed for. Further,
the Enterprise Manager interface and framework provide simple access to new data-
base self-monitoring features, responding to alerts, and managing jobs, reports, roles,
and privileges. An EM console and the underlying “Intelligent Infrastructure” are
installed as part of the normal Oracle database installation process. EM automati-
cally discovers target databases as soon as it is installed.

Simple EM management interfaces can also be deployed through the Oracle Applica-
tion Server Portal. Management portlets are prepackaged for use with the Portal
providing displays of target summaries, outstanding alerts (notifications where
thresholds are reached or exceeded), metric details, availability timelines, and execu-
tive summary information.

Logging into Enterprise Manager after a typical installation brings you to the home
page database management console. Tabs are shown to enable quick navigation of
EM and can vary based on the Enterprise Manager version deployed. Oracle has
continued to modify the interface over the years to make finding management capa-
bilities through the interface more intuitive. The version shipping with early versions
of Enterprise Manager for Oracle Database 11g includes tabs for Home, Perfor-
mance, Availability, Server, Schema, Data Movement, and Software and Support
pages. Prior to Oracle Database 11g, the Enterprise Manager version included tabs
for Home, Administration, Maintenance, and Performance pages (see Figure 5-3). At
the top of the console page in each of these versions are links to setup (for setting up
and managing additional administrators, notification methods, etc.), preferences (for
example, notification schedules), help, and logout.

Figure 5-2. Oracle Enterprise Manager architecture

Central Console
(Grid Control)

HTTP

JDBC

HTTP

HTTP

HTTP

Monitored Targets

Management
Service

Management
Repository

Management
agent

Management
agent

Management
agent

130 | Chapter 5: Managing Oracle

In the Oracle Database 11g version, some of the key manageability functionality in
each of the tabs includes:

Home page
Provides a quick view of database status including whether the database is up,
the database version, the hostname, and listener. Key metrics describing status
of the host CPU, active sessions, and SQL response time are typically displayed
in graphical form. Summaries of diagnostics, space utilized, and high availability
status, alerts, and policy violations are also typically displayed. Related links are
provided from this page to Advisor Central (a page for quick access to the advi-
sors) and other key metrics such as the alert log content.

Performance page
Includes a summary of important performance statistics such as CPU utiliza-
tion, average active sessions, disk I/O, and instance throughput.

Availability page
Here you can manage backup and recovery using tools such as RMAN and
LogMiner.

Server page
Includes links to automated maintenance features, such as Automatic Memory
Management, the AWR, and scheduling.

Figure 5-3. Oracle Enterprise Manager Database home page

Oracle Enterprise Manager | 131

Schema page
Here you can manage users and privileges, Oracle tables, indexes, views, syn-
onyms, sequences, and database links, and can initiate related management
functions such as Flashback.

Data Movement page
Manages data movement features such as Streams and transportable tablespaces.

Software and Support page
Provides access to the Support Workbench for reporting problems to Oracle
Support that you observe in the AWR.

The sophistication of Enterprise Manager continues to grow, as illustrated by the
Real Applications Testing Option’s database workload capture and replay capability
introduced in Oracle Database 11g. You can now use Enterprise Manager to re-
create your production environment in a test environment and test your changes in
the test environment before propagating those changes back into production.

You will find this new capability under the Software and Support tab. Here you can
define and start or schedule the capture of the production workload (e.g., the load
and concurrency in the production system). You can also view other previous cap-
tured workloads, manage replays, and stop an active capture or replay. You then
move the captured workload, in replay format, to the test system. You can then
replay the production workload against the changes you make to the test system
while checking for errors, data divergence, and performance changes.

EM2Go
EM2Go is a mobile version of Enterprise Manager introduced with Oracle Database
10g. It can be used for remote wireless management of Oracle database instances and
Oracle Application Servers. Providing a subset of the functionality in Enterprise
Manager, EM2Go leverages the previously described OMS, associated Management
Repository, and Oracle Agents in the EM architecture. The Enterprise Manager Con-
sole is accessed through a Microsoft Pocket PC Internet Explorer browser on a PDA
device. Communication between the console and OMS and between OMS and the
Agents is via HTTP.

The administrator begins by logging into Enterprise Manager from the EM2Go
Home page by entering the appropriate EM username and password. Upon logging
in, administrators are presented with a summary of alerts and targets. Each is a link
that you can drill to for more detail.

You can set up EM2Go to forward alert notifications by way of email directly to your
PDA. It supports ad-hoc SQL and operating system commands. Performance moni-
toring includes metrics history graphing of warnings and alerts from the Oracle
database and Oracle Application Server and access to the database home page.

132 | Chapter 5: Managing Oracle

Fragmentation and Reorganization
Fragmentation is a problem that can negatively impact performance—and one that
many DBAs have struggled to manage in the past. Fragmentation can be an
unwanted phenomenon if it results in small parts of noncontiguous “free space” that
cannot be reused.

In Oracle, a collection of contiguous blocks is referred to as an extent. A collection of
extents is referred to as a segment. Segments can contain anything that takes up
space—for example, a table, an index, or a rollback segment. Segments typically con-
sist of multiple extents. As one extent fills up, a segment begins to use another
extent. As fragmentation occurs, by database activity that leaves “holes” in the
contiguous space represented by extents, segments acquire additional extents. As
fragmentation grows, increased I/O activity results in reduced performance.

Resolving Fragmentation
As of Oracle Database 10g, resolving fragmentation issues became fairly trivial. You
can perform an online segment shrink using the Segment Advisor interface accessi-
ble through EM. ADDM recommends segments to shrink, and you simply choose to
accept the recommendations.

For Oracle9i databases, a common means of reducing fragmentation was through an
online reorganization accomplished through a CREATE TABLE...AS SELECT
online operation—that is, the copying of the contents of one table to another while
the original table is updated. Changes to the original table were tracked and applied
to the new table. Physical and logical attributes of the table could be changed during
this online operation, thus allowing an online reorganization.

Prior to Oracle9i, reducing fragmentation was more difficult. The general recommen-
dation was to avoid fragmentation through careful planning. But the usual way to
solve fragmentation was to reorganize a table by exporting the table, dropping it, and
importing it. The data was unavailable while the table was in the process of being
reorganized. Many DBAs claimed that they saw improved performance after reorga-
nizing segments into a single extent. Over time, a decrease in performance
reoccurred as the number of extents the table occupied increased.

Oracle performance increased as a result of these reorganization operations, but this
improvement was not due to a decrease in the number of extents. When a table is
dropped and re-created, several things happened that increased performance:

• Each block was loaded as full of rows as possible.

• As a consequence, the high-water mark of the table (the highest block that has
ever had data in it) was set to its lowest point.

Backup and Recovery | 133

• All indexes on the table were rebuilt, which meant that the index blocks were as
full as possible. The depth of the index, which determined the number of I/Os it
takes to get to the leaf blocks or the index, was sometimes minimized.

By eliminating fragments and shrinking segments in a much more automated and
online fashion, database releases since Oracle Database 10g greatly simplify solving
fragmentation problems; the result is that optimal conditions exist for performance.

Backup and Recovery
Even if you’ve taken adequate precautions, critical database records can sometimes
be destroyed as a result of human error or hardware or software failure. The only
way to prepare for this type of potentially disastrous situation is to perform regular
backup operations.

Two basic types of potential failures can affect an Oracle database: instance failure,
in which the Oracle instance terminates without going through the shutdown pro-
cess; and media failure, in which the disks that store the information in an Oracle
database are corrupted or damaged.

After an instance failure, Oracle will automatically perform crash recovery. For
example, you can use Real Application Clusters to automatically perform instance
recovery when one of its instances crashes. However, DBAs must initiate recovery
from media failure. The ability to recover successfully from this type of failure is the
result of careful planning. The recovery process includes restoring older copies of the
damaged datafile(s) and rolling forward by applying archived and online redo logs.

To ensure successful recovery, the DBA should have prepared for this eventuality by
performing the following actions:

• Multiplexing online redo logs by having multiple log members per group on dif-
ferent disks and controllers

• Running the database in ARCHIVELOG mode so that redo log files are archived
before they are reused

• Archiving redo logs to multiple locations

• Maintaining multiple copies of the control file(s)

• Backing up physical datafiles frequently—ideally, storing multiple copies in mul-
tiple locations

Running the database in ARCHIVELOG mode ensures that you can recover the
database up to the time of the media failure; in this mode, the DBA can perform
online datafile backups while the database is available for use. In addition, archived
redo logs can be sent to a standby database (explained in Chapter 10) to which they
may be applied.

134 | Chapter 5: Managing Oracle

Recovery Manager, also known as RMAN, first introduced in Oracle8 and greatly
enhanced since, provides an easy-to-use frontend to manage this process. RMAN is
accessible today through Enterprise Manager.

Types of Backup and Recovery Options
There are two major categories of backup:

Full backup
Includes backups of datafiles, datafile copies, tablespaces, control files (current
or backup), or the entire database (including all datafiles and the current control
file). Reads entire files and copies all blocks into the backup set, skipping only
datafile blocks that have never been used (with the exception of control files and
redo logs where no blocks are skipped).

Incremental backup
Includes backups of datafiles, tablespaces, or the whole database. Reads entire
files and backs up only those data blocks that have changed since a previous
backup.

You can begin backups through the Recovery Manager or the Oracle Enterprise
Manager interface to RMAN, which uses the database export facility, or you can ini-
tiate backups via standard operating system backup utilities.

In general, RMAN supports most database backup features, including open or online
backups, closed database backups, incremental backups at the Oracle block level,
corrupt block detection, automatic backups, backup catalogs, and backups to
sequential media. RMAN added capabilities in Oracle9i for one-time backup config-
uration, recovery windows to determine and manage expiration dates of backups,
and restartable backups and restores. Also added was support for testing of restores
and recovery.

Since Oracle Database 10g, RMAN can perform image copy backups of the data-
base, tablespaces, or datafiles. RMAN can be used to apply incremental backups to
datafile image backups. The speed of incremental backups is increased through a
change-tracking feature by reading and backing up only changed blocks.

Recovery options include the following:

• Complete database recovery to the point of failure

• Tablespace point-in-time recovery (recovery of a tablespace to a time different
from the rest of the database)

• Time-based or point-in-time database recovery (recovery of the entire database
to a time before the most current time)

• Recovery until the CANCEL command is issued

• Change-based or log sequence recovery (to a specified System Change Number,
or SCN)

Backup and Recovery | 135

You can recover through RMAN, using either the recovery catalog or control file or
via SQL or SQL*Plus.

RMAN in Oracle Database 10g improved the reliability of backups and restores
through a number of added features. This version added backup and restore of
standby control files. RMAN now can automatically retry a failed backup or restore
operation. During recovery, RMAN can automatically create and recover datafiles
not in the most recent backup. Where backups are missing or corrupt during the
restore process, RMAN automatically uses an older backup.

To speed backups and restore operations, Oracle Database 10g introduced the Flash
Recovery Area, thus organizing recovery files to a specific area on disk. These files
include a copy of the control file, archived log files, flashback database logs, datafile
copies, and RMAN backups. You can set a RETENTION AREA parameter to retain
needed recovery files for specific time windows. As backup files and archivelogs age
beyond the time window, they are automatically deleted. ASM (described earlier in
this chapter) can configure the Flash Recovery Area. If availability of disk space is an
issue, you can also take advantage of RMAN’s ability to compress backup sets.

This section provided only a very brief overview of standard backup and recovery.
For more information on providing high availability, refer to Chapter 11.

Oracle Secure Backup
Oracle began bundling its own Secure Backup solution with Oracle Database 10g.
Called Oracle Secure Backup Express (XE), it replaced Legato’s Single Server Ver-
sion (LSSV) tape storage management. Since Enterprise Manager 10g Release 2,
Secure Backup is integrated into the Enterprise Manager interface. Secure Backup XE
leverages RMAN’s reading the database block layout directly and provides tape data
protection for one server attached to one tape drive. Where an enterprise solution is
needed, Oracle offers an optional Secure Backup version that can support multiple
drives for any number of servers.

Making Sure the Backup Works
The key to providing an adequate backup and recovery strategy is to simulate recovery
from failure using the backups from your test system before using the backups to
restore a live production database. Many times, backup media that were thought to be
reliable prove not to be, or backup frequencies that were thought to be adequate prove
to be too infrequent to allow for timely recoveries. It’s far better to discover that recov-
ery is slow or impossible in test situations than after your business has been impacted
by the failure of a production system.

136 | Chapter 5: Managing Oracle

Oracle Secure Backup provides support for more than 200 different kinds of tape
drives. Secure Backup also provides Netwrok Data Management Protocol (NDMP)
support for network attached storage (NAS), Virtual Tape Library (VTL) support,
policy-based management, storage classification, dynamic drive sharing, certificate-
based authentication, and the ability to create encrypted backups.

Of course, there remain a wide variety of alternative solutions available providing
Oracle backup solutions. Oracle continues to maintain the Oracle Backup Solutions
Program (BSP) such that partners can certify their products to perform backup and
recovery for tape storage devices using RMAN. A current list of these solutions is
posted on the Oracle Technology Network web site.

Information Lifecycle Management
Information Lifecycle Management (ILM) provides a means to define classes of data,
create storage tiers for the data classes, create data access and data movement poli-
cies, and implement data compliance policies. ILM is most frequently used to move
data among various devices that are most appropriate for hosting that data, such as
different classifications of disk. The reason for doing this is that most administrators
would like to have their most frequently accessed data on the fastest but most expen-
sive disk, and the least frequently accessed data on the on the slowest but cheapest
disk.

Oracle first began supporting ILM in 2006 for database releases dating back to
Oracle9i and introduced a tool, the ILM Assistant, that can be downloaded from the
Oracle Technology Network. In addition to the ILM Assistant, you will need to have
Oracle Application Express (formerly HTML DB) installed in the database where the
data is managed.

The ILM Assistant presents a graphical user interface used in creating lifecycle defini-
tions and policies for database tables. It can advise when it is time to move, archive,
or delete data and also illustrate cost savings and storage required. The ILM Assis-
tant can also guide you in creating partitioning to match your ILM needs. Once you
have defined a strategy, it generates the scripts for moving the data.

The first time you start the ILM Assistant, you should select the Lifecycle Setup tab.
On this tab you define logical storage tiers, create lifecycle definitions, and select the
tables to be managed (see Figure 5-4). The ILM Assistant can then provide advice on
data placement. Optionally, you can also view partition simulation, a lifecycle sum-
mary, and storage costs, and can define policy notes.

In subsequent restarts of the ILM Assistant, you will see a Lifecycle Events Calendar
that will display a list of all outstanding events. The calendar, and also the events and
history of event scans, might be viewed subsequently by selecting the Lifecycle Man-
agement tab.

Working with Oracle Support | 137

A number of reports are provided under the Reports tab, including multitier storage
costs by lifecycle or table, logical storage tier summary, partitions by table or storage
tier, lifecycle retention summary, and data protection summary. Under the Compli-
ance and Security tab, you can view the status of virtual private database (VPD)
policies and when digital signatures were generated; create digitally signed result sets
for tracking immutability; view a summary of privacy and security definitions,
policies, views, and access privileges; manage and view fine-grained audit (FGA) pol-
icies; and view and provide policy notes.

Working with Oracle Support
Regardless of the extent of your training, there are bound to be some issues that you
can’t resolve without help from Oracle Corporation. Part of the job of the DBA is to
help resolve any issues with the Oracle database. Oracle offers several levels of sup-
port including basic product support, advanced support, and incident support. Each
of these support options costs extra, but regardless of your support level, you can get
the most from Oracle by understanding how to best work with them.

Resolving problems with the assistance of Oracle Worldwide Customer Support
Services can initially be frustrating to novice DBAs and others who may report prob-
lems. Oracle responds to database problems reported as Service Requests (SRs),
sometimes referred to by their old name as Technical Assistance Requests (TARs).
The response is based on the priority or severity level at which those problems are
reported. If the problem is impacting your ability to complete a project or do busi-
ness, the problem should be reported as “priority level 2” in order to assure a timely
response. If the problem is initially assigned a lower level and the response hasn’t
been adequate, you should escalate the problem-resolution priority.

Figure 5-4. Oracle Information Lifecycle Management Assistant

138 | Chapter 5: Managing Oracle

If business is halted because of the problem, the priority level assigned should be
“priority level 1.” However, if a problem is reported at level 1, the caller must be
available for a callback (even if after hours). Otherwise, Oracle will assume that the
problem wasn’t as severe as initially reported and may lower the priority level for
resolution.

Reporting Problems
You can report problems via phone, email, or the web browser-based MetaLink inter-
face. MetaLink support, included with basic product support, has grown extremely
popular as answers to similar problems can be rapidly found by you directly, which
may result in eliminating time required for a physical response. MetaLink provides
proactive notifications, customized home pages, technical libraries and forums, prod-
uct lifecycle information, a bug database, and the ability to log SRs.

When contacting technical support, you will need your Customer Support Identifica-
tion (CSI) number. Oracle Sales Consultants can also provide advice regarding how
to report problems. Additionally, Oracle Worldwide Customer Support Services
offers training for DBAs regarding effective use of Support services.

As we noted earlier, Oracle Database 11g provides a Support Workbench in Enter-
prise Manager that you can use to report problems. This release also offers a SQL
Test Case Builder that can help Oracle Support re-create the problem and resolve it
sooner. You typically would first see problems as critical error alerts on the Enter-
prise Manager Database home page, then would view problem details, gather
additional information, create a SR, package and upload the diagnostic data to Ora-
cle Support, then track the SR and close it when resolved.

Automated Patching
Oracle Support issues MetaLink Notes whenever software bugs or vulnerabilities are
discovered and issues appropriate patches. Automated patching and notification
provided since Oracle Database 10g can reduce the time delay between Oracle’s dis-
covery of such problems and your reaction to them. Alerts can now be issued to your
Enterprise Manager console alerting you to the newly discovered bugs or vulnerabili-
ties. Through the Enterprise Configuration Management capabilities in Enterprise
Manager, you’ll see a link to the patch and the target where the patch should be
applied.

In RAC and grid environments, “rolling” patch updates can be applied across your
nodes without taking the cluster or grid down. (We described the process of apply-
ing rolling patch updates in Chapter 3.) Further, you can roll back a patch (e.g.,
uninstall it) on an instance if you observe unusual behavior and want to remove the
patch.

139

Chapter 6 CHAPTER 6

Oracle Security, Auditing, and
Compliance6

The primary purpose of Oracle database software is to manage the valuable data that
lies at the core of virtually every operation in your organization. Part of the value of
that data is that the data is yours—the data that can be used to give your company
unique advantages. For this reason, you need to protect your data from others who
should not have access to it. This protection is the subject of this chapter. Here we
focus on three different aspects of the overall task of protecting your data:

• Security covers the tools that you use to allow access only to those people you
designate.

• Auditing allows you to discover who did what with your data. Auditing is the
process of creating a history of access that can be used to understand database
operations as well as spot access violations and attempts. When you are config-
uring Oracle Database 11g, you will be asked if you want to keep the default
security settings. If you do, auditing will be enabled and a new default password
profile option will be in place. A number of other database initialization parame-
ters will be reset at this time.

• Compliance is the ability to prove that your data is secure and reliable—a proof
that is now legally required in many cases. Although compliance may strike
many technical folks as overkill, the simple fact is that a lack of compliance
alone may result in significant penalties to your company. Compliance is thus a
topic of great interest to management.

Security
One of the most important aspects of managing the Oracle database effectively in a
multiuser environment is the creation of a security scheme to control access to and
modification of the database. In an Oracle database you grant security clearance to
individual users or database roles, as we describe in the following sections.

140 | Chapter 6: Oracle Security, Auditing, and Compliance

Security management is typically performed at three different levels:

• Database level

• Operating system level

• Network level

At the operating system level, DBAs should have the ability to create and delete files
related to the database, whereas typical database users do not need these privileges.
Oracle includes operating-system-specific security information as part of its stan-
dard documentation set. In many large organizations, DBAs or database security
administrators work closely with computer system administrators to coordinate
security specifications and practices.

Database security specifications control user database access and place limits on user
capabilities through the use of username/password pairs. Such specifications may
limit the allocation of resources (disk and CPU) to users and mandate the auditing of
users. Database security at the database level also provides control of the access to
and use of specific schema objects in the database.

Usernames, Privileges, Groups, and Roles
The DBA or database security administrator creates usernames that can be used to
connect to the database. Two user accounts are automatically created as part of the
installation process and are assigned the DBA role: SYS and SYSTEM. (The DBA role
is described in a later section.)

Each database username has a password associated with it that prevents unautho-
rized access. A new or changed password should:

• Contain at least eight characters

• Contain at least one number and one character

• Not be the username reversed

• Differ from the username or use name with 1 through 100 appended

• Not match any word on an internal list of simple words

• Differ from the previous password (if there is one) by at least three characters

Oracle can check for these characteristics each time a password is created or modi-
fied as part of enforced security policies.

Once a user has successfully logged into the database, that user’s access is restricted
based on privileges, which are the rights to execute certain SQL commands. Some
privileges may be granted systemwide (such as the ability to delete rows anywhere in
the database), while others may apply only to a specific schema object in the data-
base (such as the ability to delete rows in a specific table).

Security | 141

Roles are named groups of privileges and may be created, altered, or dropped. In
most implementations, the DBA or security administrator creates usernames for
users and assigns roles to specific users, thereby granting them a set of privileges.
This is most commonly done today through the Oracle Enterprise Manager (EM)
console, described in Chapter 5. For example, you might grant a role to provide
access to a specific set of applications, such as “Human Resources,” or you might
define multiple roles so that users assigned a certain role can update hourly pay in
the Human Resources applications, while users assigned other roles cannot.

Every database has a pseudorole named PUBLIC that includes every user. All users
can use privileges granted to PUBLIC. For example, if database links are created
using the keyword PUBLIC, they will be visible to all users who have privileges to the
underlying objects for those links and synonyms. As we describe in the “Auditing”
section of this chapter, the privilege CREATE PUBLIC DB LINK is now audited. As
database vulnerability is an increasing concern, you may want to consider limited
privileges for the PUBLIC role.

Identity Management
No amount of security can overcome the handicap of poor security administration.
The more complex the administration tasks that are being performed, the more likely
it is that errors will occur, leaving security holes in your system. In situations where
you want to centrally control access to a number of databases, Oracle Identity Man-
agement can provide a solution by storing user information and their authorization
in a LDAP directory such as the Oracle Internet Directory (OID). For example, you
might use OID to authorize SYSDBA and SYSOPER connections.

Security Privileges
Four basic types of database operations can be limited by security privileges in an
Oracle database:

• SELECT to perform queries

• INSERT to put rows into tables or views

• UPDATE to update rows in tables or views

• DELETE to remove rows from tables, table partitions, or views

In addition to these data-specific privileges, several other privileges apply to the
objects within a database schema:

• CREATE to create a table in a schema

• DROP to remove a table in a schema

• ALTER to alter tables or views

142 | Chapter 6: Oracle Security, Auditing, and Compliance

All of these privileges can be handled with two simple SQL commands. The GRANT
command gives a particular privilege to a user or role, while the REVOKE command
takes away a specific privilege. You can use GRANT and REVOKE to modify the
privileges for an individual or a role. You can also grant the ability to regrant privi-
leges to others. You can use either of these commands with the keyword PUBLIC to
issue or revoke a privilege for all database users.

Another security privilege, EXECUTE, allows users to run a PL/SQL procedure or
function. By default, the PL/SQL routine runs with the security privileges of the user
who compiled the routine. Alternately, you can specify that a PL/SQL routine run
with what is termed invoker’s rights, which means that the routine is run with the
security privileges of the user who is invoking the routine.

Special Roles: DBA, SYSDBA, and SYSOPER
Your Oracle database comes with three special roles defined. The DBA role is one of
the most important default roles in Oracle. The DBA role includes most system
privileges. By default, it is granted to the users SYS and SYSTEM, both created at
database creation time. Base tables and data dictionary views are stored in the SYS
schema. SYSTEM schema tables are used for administrative information and by vari-
ous Oracle tools and options. A number of other administrative users also exist, as
consistent with the specific Oracle features deployed.

The DBA role does not include basic database administrative tasks included in the
SYSDBA or SYSOPER system privileges. Therefore, SYSDBA or SYSOPER should be
specifically granted to administrators. They will “CONNECT AS” either SYSDBA or
SYSOPER to the database and will have access to a database even when it is not
open. SYSDBA privileges can be granted to users by SYS or by other administrators
with SYSDBA privileges. When granted, the SYSDBA privileges allow a user to
perform the following database actions from the command line of SQL*Plus or by
logging into Oracle Enterprise Manager’s point-and-click interface:

STARTUP
Start up a database instance.

SHUTDOWN
Shut down a database instance.

ALTER DATABASE OPEN
Open a mounted but closed database.

ALTER DATABASE MOUNT
Mount a database using a previously started instance.

ALTER DATABASE BACKUP CONTROLFILE
Start a backup of the control file. However, backups are more frequently done
through RMAN today, as described in the “Backup and Recovery” section in
Chapter 5.

Security | 143

ALTER DATABASE ARCHIVELOG
Specify that the contents of a redo log file group must be archived before the
redo log file group can be reused.

ALTER DATABASE RECOVER
Apply logs individually or start automatic application of the redo logs.

CREATE DATABASE
Create and name a database, specify datafiles and their sizes, specify logfiles and
their sizes, and set parameter limits.

DROP DATABASE
Delete a database and all of the files included in the control file.

CREATE SPFILE
Create a server parameter file from a text initialization (INIT.ORA) file.

RESTRICTED SESSION privilege
Allow connections to databases started in Restricted mode. Restricted mode is
designed for activities such as troubleshooting and some types of maintenance,
similar to what SYS can do.

Administrators connected as SYSOPER can perform a more limited set of com-
mands: STARTUP and SHUTDOWN, CREATE SPFILE, ALTER DATABASE OPEN
or MOUNT or BACKUP, ALTER DATABASE ARCHIVELOG, ALTER DATABASE
RECOVER, as well as the RESTRICTED SESSION privilege.

Database administrators are authenticated using either operating system authentica-
tion or a password file. The CONNECT INTERNAL syntax supported in earlier
releases of Oracle is no longer available. When operating system authentication is
used, administrative users must be named in the OSDBA or OSOPER defined
groups. For password file authentication, the file is created with the ORAPWD util-
ity. Users are added by SYS or by those having SYSDBA privileges.

With each release of Oracle, fewer default users and passwords are
automatically created during database installation and creation.
Regardless, it is generally recommended practice to reset all default
passwords that are documented in Oracle.

Policies
A policy is a way to extend your security framework. You can specify additional
requirements in a policy that are checked whenever a user attempts to activate a role.
Policies are written in PL/SQL and can be used, for example, to limit access to a par-
ticular IP address or to particular hours of the day.

Since the release of Oracle Database 10g Oracle Enterprise Manager has featured a
visual interface to a policy framework in the EM repository that aids management of
database security. Security policies or rules are built and stored in a policy library.

144 | Chapter 6: Oracle Security, Auditing, and Compliance

Violations of rules are reported as critical, warning, or informational through the EM
interface. Out of the box, security violations are checked on a daily basis. Policies
may be adjusted according to business demands, and violations can be overridden
when they are reported.

Restricting Data Access
There are situations in which a user will have access to a table, but not all of the data
in the table should be viewed. For example, you might have competing suppliers
looking at the same tables. You may want them to be able to see the products they
supply and the total of all products from suppliers, but not detailed information
about their competitors. There are a number of ways to do this, as we’ll describe in
the following sections, using other examples from Human Resources (HR).

View-based security

You can think of views as virtual tables defined by queries that extract or derive data
from physical base tables. You can use views to present only the rows or columns
that a certain group of users should be able to access.

For example, in an HR application, users from the HR department may have full
access to the employee base table, which contains basic information such as
employee names, work addresses, and work phone numbers, as well as more
restricted information such as Social Security numbers, home addresses, and home
telephone numbers. For other users in the company, you’ll want to hide more per-
sonal information by providing a view that shows only the basic information.

Creating a virtual private database or leveraging the Label Security Option, described
in subsequent sections of this chapter provide a more secure means of restricting
access to certain data.

Fine-grained access control

Implementing security is a critical but time-consuming process, especially if you
want to base security on an attribute with a wide range of values. A good example of
this type of situation in the HR scenario previously described would be the need to
limit the data an HR representative can see to only the rows relating to employees
that he supports. Here you’re faced with a situation in which you might have to
define a view for every HR representative, which might mean many, many different
views, views that would have to change every time an HR representative left or
joined the company. And if you want to grant write access for a representative’s own
employees and read access for other employees, the situation gets even more com-
plex. The smaller the scope, or grain, of the access control you desire, the more work
is involved in creating and maintaining the security privileges.

Security | 145

Oracle offers a type of security that you can use to grant this type of fine-grained
access control (FGAC). Security policies implemented as PL/SQL functions can be
associated with tables or views enabling creation of a virtual private database (VPD).
A security policy returns a condition that’s dynamically associated with a particular
SQL statement, which transparently limits the data that’s returned. In the HR exam-
ple, suppose that each representative supports employees with a last name in a
particular alphabetic range, such as A through G.

The security policy would return a WHERE clause, based on a particular representa-
tive’s responsibilities, that limits the rows returned. You can keep the range for each
representative in a separate table that is dynamically queried as part of the security
policy function. This simplifies management of allowable access if roles and respon-
sibilities change frequently.

You can associate a security policy with a particular view or table by using the built-
in PL/SQL package DBMS_RLS, which also allows you to refresh, enable, or disable
a security policy.

Oracle Database 10g and newer database releases feature a VPD that is even more
fine-grained, enabling enforced rewrites when a query references a specific column.
Performance of queries in VPD implementations is also improved in Oracle Data-
base 10g through the support of parallel query. Fine-grained security can also be
based on the type of SQL statement issued. The security policy previously described
could be used to limit UPDATE, INSERT, and DELETE operations to one set of
data, but allow SELECT operations on a different group of data. For a good descrip-
tion of FGAC through PL/SQL, please refer to Oracle PL/SQL Programming by
Steven Feuerstein and Bill Pribyl and Oracle PL/SQL for DBAs by Arup Nanda and
Steven Feuerstein (O’Reilly; see Appendix B for details).

Label Security Option
The Oracle Label Security Option eliminates the need to write VPD PL/SQL
programs to enforce row-level label security where sensitivity labels are desired. The
collections of labels, label authorizations, and security enforcement options can be
applied to entire schemas or to specific tables.

Sensitivity labels are defined based on a user’s need to see and/or update data. They
consist of a level denoting the data sensitivity, a category or compartment that
further segregates the data, and a group used to record ownership (which may be
hierarchical in nature) and access.

Standard group definitions given to users provide them access to data containing
those group labels. Inverse groups in the data can be used to define what labels a
user must have in his profile in order to access it.

146 | Chapter 6: Oracle Security, Auditing, and Compliance

Policies are created and applied, sensitivity labels are defined, and user labels are set
and authorized through a policy manager tool accessible through EM. You can also
add SQL predicates and label functions and manage trusted program units, Oracle
VPD fine-grained access control policies, and VPD application contexts. Label Secu-
rity policy management is possible in Oracle Database 10g and later versions when
the Oracle Internet Directory is also used.

Security and Application Roles and Privileges
Applications can involve data and logic in many different schemas with many differ-
ent privileges. To simplify the issues raised by this complexity, roles are frequently
used in applications. Application roles have all the privileges necessary to run the
applications, and users of the applications are granted the roles necessary to execute
them.

Application roles may contain privileges that should be granted to users only while
they’re running the application. Application developers can place a SET ROLE com-
mand at the beginning of an application to enable the appropriate role and disable
others only while the application is running. Similarly, you can invoke a DBMS_
SESSION.SET_ROLE procedure from PL/SQL.

Another way application security is sometimes accomplished is by encapsulating
privileges in stored procedures. Instead of granting direct access to the various tables
for an application, you can create stored procedures that provide access to the tables
and grant access to the stored procedures instead of the tables. For example, instead
of granting INSERT privileges for the EMPLOYEE table, you might create and grant
access to a stored procedure called HIRE_EMPLOYEE that accepts as parameters all
the data for a new employee.

When you run a stored procedure normally, the procedure has the access rights that
were granted to the owner of the procedure; that owner is the schema in which the
procedure resides. If a particular schema has access to a particular database object,
all stored procedures that reside in that schema have the same rights as the schema.
When any user calls one of those stored procedures, that user has the same access
rights to the underlying data objects that the procedure does.

For example, suppose there is a schema called HR_REP. This schema has write
access to the EMP table. Any stored procedure in the HR_REP schema also has write
access to the EMP table. Consequently, if you grant a user access to a stored proce-
dure in the HR_REP schema, that user will also have write access to the EMP table
regardless of her personal level of security privilege. However, she will have access
only through the stored procedures in the schema.

One small but vitally important caveat applies to access through
stored procedures: the security privilege must be directly granted to
the schema, not granted by means of a role.

Security | 147

If you attach the keyword AUTHID CURRENT_USER to a stored procedure when it
is compiled, security restrictions will be enforced based on the username of the user
invoking the procedure, rather than the schema that owns the stored procedure (the
definer of the procedure). If a user has access to a particular database object with a
particular privilege, that user will have the same access through stored procedures
compiled with the AUTHID CURRENT_USER.

Distributed Database and Multitier Security
All the security features available for standard Oracle databases are also available for
the distributed database environment, which is covered in Chapter 13. However, the
distributed database environment introduces additional security considerations. For
example, user accounts needed to support server connections must exist in all of the
distributed databases forming the system. As database links (which define connec-
tions between distributed database instances) are created, you will need to allow the
user accounts and roles needed at each site.

Distributed security management

For large implementations, you may want to configure global authentication across
these distributed databases for users and roles. Global authentication allows you to
maintain a single authentication list for multiple distributed databases. Where this
type of external authentication is required, Oracle’s Advanced Security Option, dis-
cussed in the next section, provides a solution.

Enterprise Manager is commonly used to configure valid application users to Ora-
cle’s LDAP-compliant OID server. A user who accesses an application for which he is
not authenticated is redirected to a login server. There, he is prompted for a user-
name and password that are checked against the OID server. A cookie is returned
and the user is redirected from the login server to the application.

Oracle Identity Management, described earlier in this chapter, can be used to man-
age security across multiple platforms and security systems.

Multitier security

In typical three-tier implementations, the Oracle Application Server runs some of the
application logic, serves as an interface between the clients and database servers, and
provides much of the Oracle Identity Management (OIM) infrastructure. The Oracle
Internet Directory provides directory services running as applications on an Oracle
database. The directory synchronization service, provisioning integrated service, and
delegated administrative service are part of OID. Security in middle-tier applications
is controlled by applications’ privileges and the preservation of client identities
through all three tiers.

148 | Chapter 6: Oracle Security, Auditing, and Compliance

Using multiple tiers, as with large applications or web-based applications, can also
call for proxy authentication. The application connects to code in the middle tier,
which accesses the database through a proxy, frequently through shared connec-
tions. Some databases associate security with a session, which means that sessions
must be reestablished when the user identity changes. This limitation makes the mul-
titier approach harder.

Oracle separates authentication from sessions, so the use of a proxy in the middle
tier is feasible. A single session can support different users with different identities.
Prior to Oracle 10g Release 2, the only way to take advantage of this capability was
by using the OCI interface, which was code-intensive. With Release 2, this limita-
tion was lifted, so standard SQL and SQL tools, such as SQL*Plus, could use proxy
authentication.

Advanced Security Option
The Oracle Advanced Security Option (ASO), formerly known as the Advanced Net-
working Option (ANO), is used in distributed environments linked via Oracle Net in
which there are concerns regarding secure access and transmission of data. This
option specifically provides data encryption during transmission to protect data from
unauthorized viewing over Oracle Net, as well as Net/SSL, IIOP/SSL, and between
thin JDBC clients and the database. Encryption algorithms supported include RC4_
40, RC4_56, RC4_128, RC4_256, DES, DES_40, 3DES112, 3DES168, AES128,
AES192, and AES256. Communications packets are protected against data modifica-
tion, transaction replay, and removal through use of MD5 and SHA-1 algorithms.

Transparent Data Encryption (described in the next section) is included as part of
the Advanced Security Option beginning with Oracle Database 10g Release 2. Trans-
parent Data Encryption provides an easy way to encrypt data in the database, and
the network data encryption option of ASO protects the data during transmission to
the client.

ASO also provides support for a variety of identity authentication methods to ensure
that user identities are accurately known. Third-party authentication services sup-
ported include Kerberos, RADIUS, and DCE. RADIUS enables support of third-party
authentication devices, including smart cards and token cards. Public Key Infrastruc-
ture (PKI) authentication, popular for securing Internet-based e-commerce
applications, uses X.509 v3 digital certificates and can leverage Entrust Profiles
stored in Oracle Wallets. Oracle Database 10g added authentication capabilities for
users who have Kerberos credentials, and enables Kerberos-based authentication
across database links.

In a typical scenario, the Oracle Enterprise Security Manager configures valid applica-
tion users to the LDAP-compliant OID server. An X.509 certificate authority creates
private key pairs and publishes them in Oracle wallets (through Oracle Wallet

Security | 149

Manager) to the LDAP directory. A user who wants to log in to a database server will
need a certificate and a private key, which can be retrieved from that user’s pass-
word-protected wallet, which resides in the LDAP directory. When the user’s key on
the client device is sent to the database server, it is matched with the paired key
retrieved by the server via SSL from the LDAP directory and the user is authenti-
cated to use the database.

Encryption
The previous sections of this chapter all deal with the need to protect access to data
in the Oracle database. There may be times when you want to take the extra step of
protecting the actual data values from unauthorized viewing by encrypting the data.

Oracle has provided data encryption for several releases, but Oracle Database 10g
Release 2 included a significant new feature called Transparent Data Encryption.
Prior to the introduction of this feature, encrypted data stored in the Oracle data-
base had to be decrypted by an application before it could be used. This scenario
caused a number of limitations, the most prominent being that decryption of data
was done by applications. If you wanted to start encrypting a particular piece of data,
you would have to change all data access routines in every application that used the
data. This limitation alone made it difficult to consider adding encryption to existing
data.

With Transparent Data Encryption, the database does the work of encrypting and
decrypting data automatically. Data sent to the database is encrypted by Oracle, and
data requested from the database is decrypted. No additional code is required in an
application, which means that you can encrypt existing data without changing any of
your SQL access statements.

Oracle Database 11g allows you to encrypt entire tablespaces (described in
Chapter 4) with Transparent Data Encryption, and this feature should reduce man-
agement overhead for this feature.

Secure Backup
The security features described in previous sections give you the tools you need to
keep the data in your Oracle database secure. But what about when the data leaves
your Oracle database—for example, when you perform the necessary maintenance
step of backing up the data?

Recent events have shown that lost backup tapes are a reality, and backup tapes can
be stolen. Secure Backup, released between Oracle Database 10g Release 2 and Ora-
cle Database 11g, automatically encrypts your backup data. The data can be
decrypted only by the source database, so even if a backup tape is lost or stolen, the
recipient will not be able to see your data.

150 | Chapter 6: Oracle Security, Auditing, and Compliance

Auditing
The Oracle database gives you the ability to restrict unauthorized access to your
valuable data. However, your security is only as good as your implementation, and
people do make mistakes. In addition, you may want to understand what type of
activities—legitimate or not—are taking place with your data. The ability to audit
database activity can address both of these issues.

Oracle’s audit capabilities let you track actions at the statement level, privilege level,
or schema object level for the entire database or particular users. Auditing can also
gather data about database activities for planning and tuning purposes. Auditing of
connections with administrative privileges to an instance and audit records record-
ing database startup and shutdown occur by default.

You can also audit sessions at the user level, which captures some basic but
extremely useful statistics such as the number of logical I/Os, the number of physi-
cal I/Os, and the total time logged on. As noted in the previous chapter, gathering
performance statistics is low in terms of overhead, and Oracle Database 10g and later
releases automatically gather statistics in populating the Automatic Workload
Repository (AWR).

Audit records always contain the following information:

• Username

• Session identifier

• Terminal identifier

• Name of schema object accessed

• Operation performed or attempted

• Completion code of the operation

• Date and timestamp

The records may be stored in a data dictionary table (AUD$ in the SYS schema),
which is also called the database audit trail, or in an operating system audit trail.

Oracle9i added fine-grained auditing, which enabled selective audits of SELECT
statements with bind variables based on access of specified columns. Oracle Data-
base 10g added extended SQL support for fine-grained auditing. You can now
perform granular auditing of queries, UPDATE, INSERT, and DELETE operations
through SQL.

In Oracle Database 11g, auditing is turned on by default, and the AUDIT_TRAIL ini-
tialization parameter is set to DB. Privileges audited by default include:

• ALTER ANY PROCEDURE

• ALTER ANY TABLE

• ALTER DATABASE

Compliance | 151

• ALTER PROFILE

• ALTER SYSTEM, ALTER USER

• AUDIT SYSTEM

• CREATE ANY JOB, CREATE ANY LIBRARY, CREATE ANY PROCEDURE,
CREATE ANY TABLE, CREATE EXTERNAL JOB, CREATE PUBLIC DB
LINK, CREATE SESSION, CREATE USER

• DROP ANY PROCEDURE, DROP ANY TABLE, DROP PROFILE, DROP
USER

• EXEMPT ACCESS POLICY

• GRANT ANY OBJECT PRIVILEGE, GRANT ANY PRIVILEGE, and GRANT
ANY ROLE

Compliance
The slogan “trust, but verify” could apply to the functions of security and auditing.
Compliance extends that slogan to “trust, verify, and prove it” and describes the
tools necessary to provide proof that your data has been used properly.

Compliance is based on the security and audit features described in previous sec-
tions. For the most part, compliance is the result of a new element introduced into
the corporate landscape—government requirements. In the United States and else-
where, compliance is being increasingly required by government regulation, so the
ability of the Oracle database to make compliance easy is becoming correspondingly
important. Compliance is crucial for many organizations, and the people responsible
for guaranteeing compliance are not necessarily in the IT department. Conse-
quently, the implementation of security and audit schemes has had to be simplified
and coordinated to address compliance needs.

Oracle has two options specifically designed to address compliance challenges—
Oracle Data Vault and Oracle Audit Vault; these are described in the following
sections. The related Flashback Data Archive capability, also mentioned below, is
described in greater detail in Chapter 3.

Oracle Database Vault Option
The Oracle Database Vault Option was introduced in 2006 and restricts DBAs and
other highly privileged users from accessing application data to which they should
not have access. It can also be set up so that applications’ DBAs are not allowed to
manipulate the database or access other applications. A security administrator can
use the Oracle Database Vault Option to describe the security scheme that the orga-
nization wants to implement, and this option automatically implements the schemes
using the features described earlier in this chapter.

152 | Chapter 6: Oracle Security, Auditing, and Compliance

Key parameters defined in the Oracle Database Vault Option are called factors. A
factor is essentially a descriptive dimension that will affect security across the entire
database. Factors include things such as specific application programs, locations, or
times of day. This option comes with more than 40 factors defined, and users can
create their own factors.

Factors are used to define access and audit particular security dimensions. You can
create rules that limit types of access to a particular factor and rule sets that combine
multiple factor rules together. Once you have defined rule sets, you can create appli-
cation roles based on these sets, as well as command rules that control whether
database commands can be executed, based on the outcome of rule evaluation. For
example, you could prevent anyone from dropping a particular table unless the com-
mand came from a particular location defined by a factor, or specify that new users
can be defined only by the combined actions of two administrators.

Rules can also be used to define database realms, which consist of a subset of the
schemas and roles that an administrator can administer. This ability is essential if an
organization uses its Oracle database to service multiple communities. You can
define a realm and give an administrator privileges on that realm without compro-
mising data in other schemas. The overall effect of realms is to allow secure
delegation of administrative responsibilities.

All of the rule enforcement is audited as part of the the Oracle Database Vault
Option, which provides the type of documentation required for complete compli-
ance. Figure 6-1 illustrates the various components of the Oracle Database Vault
Option solution.

Figure 6-1. Oracle Database Vault Option components

User

Realms

Command Rules

Compliance | 153

Oracle Audit Vault Server
The Oracle Audit Vault Server was introduced in 2007 and collects data from audit
files in Oracle and in the underlying operating system. It consolidates this data in a
secure repository and provides out-of-the-box compliance reporting. Among the
reports provided are privileged user accesses, account management, data access, and
failed login attempts. Stored in an Oracle data warehouse schema, the data is easily
accessible by business intelligence tools such as Oracle’s BI Publisher.

Because the Oracle Audit Vault Server monitors all incoming audit data, it can gener-
ate alerts based on IT policies. For example, policies can be defined to trigger alerts
for privileged users’ changes and sensitive data access. Oracle databases dating back
to Oracle 9i Release 2 can be monitored. A software development kit (SDK) is avail-
able for building custom audit collectors.

Flashback Data Archive
Flashback technology was introduced in Chapter 3, because this capability is based
on rollback segments. Although Flashback was initially introduced with Oracle9i,
Oracle Database 11g enables a particular use of Flashback that can help address
compliance issues.

Flashback Data Archive gives you the ability to see all of the changes that occur to a
record throughout its lifetime. This type of history tracking can provide the key
information required to demonstrate compliance, as well as to track the source of
errors in compliance or usage.

154

Chapter 7CHAPTER 7

Oracle Performance 7

As this book illustrates, the Oracle database has a wide range of features. As you gain
experience with Oracle, you’ll reap more of the benefits it has to offer. One area on
which you will eventually focus is performance tuning, since you will inevitably be
forced to wring additional performance from your Oracle database in the face of
increasing demands. This chapter gives you the basics you’ll need to understand as
you address performance.

Oracle database performance tuning has been extensively documented in the Oracle
community. There are numerous books that provide detailed and excellent informa-
tion; many of these are listed in Appendix B. This book is focused more on the
concepts of the Oracle database, so we won’t delve too deeply into specific tuning
recommendations. Instead, we’ll touch on the importance of tuning and discuss
some basic notions of how Oracle uses resources. Here, we’re simply laying a foun-
dation for understanding Oracle performance. This understanding will help you
implement the tuning procedures most suited for your own particular implementa-
tion. Where appropriate, we’ll provide some basic guidance on how the latest Oracle
features help you manage performance.

Certainly, Oracle provides more and better automated tuning options in the current
release than it did when we wrote earlier editions of this book. However, getting
optimal performance is about more than tuning. There is no substitute for getting
your hardware platform properly configured with appropriate CPUs, memory, and
especially storage. Good database design is also critical for achieving optimal perfor-
mance, based on how your lines of business use the system.

Performance Tuning Basics
Performance is one of the trickiest aspects in the operation of your database since so
many factors can be involved. There is the database, to be sure. But there are also
platform deployment strategies to consider. Today, the infrastructure likely resides

Performance Tuning Basics | 155

across multiple platforms, including database servers and applications servers. There
is network and interconnect bandwidth to consider and varying complexity in use
among your users.

One of the curious aspects of performance is that “good performance” is defined by
its absence rather than by its presence. You can recognize bad performance easily,
but good performance is usually defined as simply the absence of bad performance.
Performance is simultaneously a very simple topic—any novice user can implicitly
understand it—and an extremely complex topic that can strain the ingenuity of the
most proficient database administrator.

Before getting into a specific discussion of Oracle performance, it makes sense to
define a basic methodology for investigating performance problems.

There are three basic steps to understanding how to address performance issues with
your Oracle database:

1. Define performance and performance problems.

2. Check the performance of the Oracle server software.

3. Check the overall performance of the server machine.

Defining Performance and Performance Problems
The first step in performance tuning is to determine if there actually is a performance
problem. In the previous section, we mentioned the concept of poor performance
and how users often are the first to recognize it. But what exactly is poor
performance?

Poor performance is inevitably the result of disappointment—a user feels that the
system is not performing as expected. Consequently, you must first evaluate how
real these expectations are in the first place.

If expectations are realistic—for example, a scenario where performance has
degraded from a previous level and the business is impacted—you then need to iden-
tify which of the system’s components are causing the problems. You must refine a
general statement like “the system is too slow” to identify which types of operations
are too slow, what constitutes “too slow,” and when these operations are slowing
down. For example, the problem may occur only on specific transactions and at spe-
cific times, or all transactions and reports may be performing below the users’
expectations.

Once you’ve defined the performance expected from your system, you can begin to
try to determine where your performance problem lies. Performance problems occur
when there is a greater demand for a particular resource than the resources available
to service that demand, and the system slows down while applications wait to share
the resource.

156 | Chapter 7: Oracle Performance

Oracle Server Performance
The first place you’ll likely begin looking for resource bottlenecks is in the Oracle
database software using Oracle Enterprise Manager (introduced in Chapter 5) to
identify less than optimal use of Oracle’s internal resources. Bottlenecks within your
database result in sessions waiting unnecessarily, and performance tuning is aimed at
removing these bottlenecks.

Oracle’s dynamic performance views provide insight into bottlenecks within your
Oracle database. Prior to the introduction of Oracle’s Automatic Workload Reposi-
tory (AWR), the Automatic Database Diagnostics Monitor (ADDM), and Oracle
Enterprise Manager Grid Control in Oracle Database 10g, querying the performance
views often was the first step database administrators performed in determining bot-
tlenecks. All of these performance views have names that begin with V$, and, from
Oracle9i on, there are also global views (for all nodes in a Real Application Clusters
or RAC database) that begin with GV$. Two views, in particular, identify the sources
of these waits; these are invaluable for guiding your analysis:

V$SYSTEM_EVENT
Provides aggregated, systemwide information about the resources for which the
whole instance is waiting

V$SESSION_EVENT
Provides cumulative list of events waited for in each session

V$SESSION_WAIT
Provides detailed, session-specific information about the resources for which
individual sessions are currently waiting or last waited for

V$SESSION
Provides session information for each current session including event currently
or last waited for

You can use these views to pinpoint the resources that are causing the most waits.
Focusing on the resources causing the most waiting can provide large performance
improvements.

Oracle Database 10g and newer releases provide an enhanced wait
model that makes it easier to determine exactly who is waiting for
what resource at what time.

You may find that your problem has a simple source, such as a lower-than-expected
database buffer cache hit ratio. Since the cache is not working at its optimal level,
you could simply increase the initialization parameter DB_BLOCK_BUFFERS to
increase the size of the cache and possibly improve the hit ratio. You can monitor the
performance of the buffer cache hit ratio in V$METRICNAME.

Performance Tuning Basics | 157

Other situations may not be quite so clear cut, using the approach of investigating
parameters exposed by views. For example, you could find that it takes a relatively
long time to fetch database rows from the disk. This situation may be caused by con-
tention on the database server’s disks and could be caused by less than optimal
placement of Oracle files on disk or by other applications on the server.

AWR, ADDM, and Enterprise Manager
A much better approach today is to use Enterprise Manager (also known as Grid
Control for RAC implementations) as the starting point for performance monitoring
and management. The Automatic Workload Repository (AWR) captures and stores
information about resource utilization by Oracle workloads. By default, statistics are
captured every 30 minutes and are stored for 7 days. These statistics are accessible
through views, but Enterprise Manager provides a much simpler-to-use interface.

The AWR helps the Oracle database identify potential performance issues by
comparing workloads over time. It also acts as the foundation for many of the man-
ageability features introduced since Oracle Database 10g, such as the Automatic
Database Diagnostic Monitor (ADDM).

Oracle’s ADDM automatically identifies and reports on resource bottlenecks, such as
CPU contention, locking issues, or poor performance from specific SQL statements.
In Oracle Database 11g, ADDM can perform analysis on clusters. Alerts sent by
ADDM to the Enterprise Manager dashboard can point to causes of contention as
they occur. Enterprise Manager provides both high-level and detailed views of
resource utilization for Oracle servers, and these can give a quick indication of the
cause of performance problems. Thresholds can be set such that the dashboard
informs you when a particular resource is nearing a critical usage level. Enterprise
Manager includes a set of advisors, which can be run to give you suggestions on how
to tune your applications or optimize performance in the Oracle database.

For tuning your applications, you’ll likely look to the SQL Advisor. Introduced in
Oracle Database 11g, it combines the functionality of the SQL Tuning Advisor, the
SQL Access Advisor, and the new Partition Advisor. The SQL Advisor leverages
information on CPU and I/O consumption captured in the AWR and identifies high-
impact SQL statements indicated by the ADDM to make recommendations. The
advisor checks to make sure statistics are not stale, identifies optimal paths through
SQL profiling, determines if the addition of indexes, materialized views, or other
database structures would be beneficial, and indicates whether changes to the high-
impact SQL statements would improve efficiency.

Key database tuning advisors include:

Memory Advisor
For optimal setting of MEMORY_TARGET for automatic memory manage-
ment in Oracle Database 11g (described later in this chapter) and optimal setting
of SGA_TARGET for shared memory management

158 | Chapter 7: Oracle Performance

Segment Advisor
For storage management and space allocation

Undo Advisor
For managing transactions

Other advisors, such as the Mean Time to Recovery (MTTR) Advisor, optimize the
setup of Oracle, including log files. (See the “Database Advisors” section in
Chapter 5 for more information on the various Oracle advisor tools.)

Machine Resource Usage
You can also run into performance issues if inadequate resources are available to the
database server. If your Oracle database is not properly deployed, adding machine
resources might help initially reduce performance bottlenecks, but can be an expen-
sive way to solve the problem. Further, the problem will likely resurface as additional
resources are consumed. But if your Oracle database is properly designed and config-
ured and you find such resource shortages, adding machine resources can be in order.

The performance of your Oracle database is based on how it uses the machine
resources that are available. These machine resources include processing power or
CPU, memory, disk I/O, and network bandwidth. You can trace the bulk of data-
base performance problems back to a bottleneck on one or more of these resources.

Network bandwidth between the server and a client is less of a problem today
because of the better bandwidth available in most locations. In a RAC deployment,
you should also pay attention to the interconnect bandwidth as excessively heavy
traffic can slow performance. But such interconnects continue to increase in speed as
well, and network bandwidth in general is much less of an issue today if proper
design choices are made.

Because of this trend, we will next focus on how Oracle uses the three key machine
resources: CPU, memory, and disk I/O. The slowest access is to disk and, as a result,
the most common database performance issues are I/O related. The majority of this
chapter therefore focuses on performance as it relates to physical disk I/O.

Network bandwidth can become a concern when using your Oracle
database to retrieve very large data sets over the network. Although
you can’t typically surmount this type of problem simply by improv-
ing the performance of your Oracle database; you can monitor net-
work and application server bottlenecks with Enterprise Manager, as
of Oracle Database 10g.

The database server machine may encounter bottlenecks caused by contention for
multiple resources. In fact, computer environments are designed so that one resource

Performance Tuning Basics | 159

can try to compensate for the lack of another resource, sometimes leading to a defi-
cit in the compensating resource as well. If you run out of physical memory, the
operating system will swap areas of memory out to the disk and can cause I/O
bottlenecks.

You can identify your machine resource usage using Oracle Enterprise Manager and
tools provided by the machine vendor or operating system utilities. Since the introduc-
tion of Enterprise Manager 10g, a performance analyzer called Automatic Performance
Monitoring (APM) has been included. APM gives you the ability to set up beacons,
which are client processes that periodically execute transactions and report the
response time. APM goes beyond the Oracle environment to help you understand per-
formance from an end user’s point of view, and this, in turn, can help you to spot
other sources of performance problems, such as network transmission slowdowns.

When All Else Fails
Your performance problems could be caused by your applications in situations
where performance tuning falls short in delivering desired results. For example, to
solve slow I/O, you might try restriping or adding throughput to the disk subsystem.
However, this situation could be caused by poorly tuned SQL and would thus be
better fixed by rewriting the SQL.

At this point, you should analyze the interaction of individual modules and SQL
statements in your application system and the database server. You could find that a
handful of SQL statements are causing your performance problem. However, it’s
more likely that you will have to reconsider the design of your application system.

Enterprise Manager and the Automatic Database Diagnostic Monitor (ADDM) can
automatically identify SQL statements that are using the most resources or are less
than optimal—the SQL Tuning Advisor component can even suggest solutions for
the identified performance problems. (These tools are described later in this chapter.)

Needless to say, more complex application redesign is far beyond the scope of this
book, so the rest of this chapter will concentrate on helping you to understand Ora-
cle machine resources. For more details about the vast topic of Oracle performance,
refer to the tuning books mentioned in Appendix B.

A Final Note on Performance Basics
Performance has real-world business implications. Whenever you attempt to address
performance problems, you must make sure to carefully monitor the areas that you
are attempting to improve, both before and after your changes. Important baseline
data gathered by the AWR includes application, database, operating system, disk I/O,
and network statistics.

160 | Chapter 7: Oracle Performance

You should use a systematic approach to both discovering the source of a perfor-
mance problem and implementing the appropriate solution. This approach calls for
establishing baselines for resource usage and response time before making any
changes, and only making a small group of changes before reexamining the perfor-
mance in the changed environment. It might be tempting to simply try to fix a
problem without taking a measured approach, but this tactic will usually lead to
additional problems down the road.

In Oracle Database 11g, such performance comparisons are made much easier. You
can preserve AWR baselines that contain performance data from specific time peri-
ods. Baselines can be established for fixed times or moving windows, or they can
serve as a template.

Oracle and Disk I/O Resources
From the perspective of machine resources, an input/output operation, or I/O, can be
defined as the operating system of the computer reading or writing some bytes from or
to the underlying disk subsystem of the database server. I/Os can be small, such as 4
KB of data, or large, such as 64 KB or 128 KB of data. The lower and upper limits on
the size of an I/O operation vary according to the operating system. Your Oracle data-
base also has a block size that you can define, called the database block size.

An Oracle database issues I/O requests in two basic sizes:

Single database block I/Os
For example, one 8 KB datablock at a time. This type of request reads or writes a
specific block. For example, after looking up a row in an index, Oracle uses a
single block I/O to retrieve the desired database block.

Multiblock I/Os
For example, 32 database blocks, each consisting of 8 KB, for a total I/O size of
256 KB. Multiblock I/O is used for large-scale operations, such as full table
scans. The number of blocks in one multiblock I/O is determined by the initial-
ization parameter DB_FILE_MULTIBLOCK_READ_COUNT.

The Oracle database can read larger amounts of data with multiblock I/Os, so there
are times when a full table scan might actually retrieve data faster than an index-based
retrieval (e.g., if the selectivity of the index is low). Oracle can perform multiblock
operations faster than the corresponding collection of single-block operations.

I/O Planning Principles for an Oracle Database
When you’re planning the disk layout and subsequent placement of the various files
that make up your database, you need to consider the different reasons Oracle per-
forms I/O and the potential performance impacts.

Oracle and Disk I/O Resources | 161

The main destinations of the I/O operations Oracle performs are the following:

• Redo logs

• Data contained in tables

• Indexes on the tables

• The data dictionary, which goes in the SYSTEM tablespace

• Sort activity, which goes in the TEMP tablespace of the user performing the sort

• Rollback information, which is spread across the datafiles of the tablespace
containing the database’s rollback segments

• Archived redo logs, which go to the archived log destination (assuming the data-
base is in ARCHIVELOG mode)

The following simple principles for managing these types of I/O can optimize
Oracle’s use of the database server’s disk subsystem:

Use disk-striping technologies to spread I/O evenly across multiple spindles
These technologies are covered in detail in the next section, “Using RAID Disk
Array Technology.” Oracle has simplified striping in Oracle Database 10g and
newer releases by enabling striping through Enterprise Manager leveraging ASM.

Use tablespaces to clearly segregate and target different types of I/O
Separate table I/O from index I/O by placing these structures in different
tablespaces. You can then place the datafiles for these tablespaces on various
disks to provide better performance for concurrent access.

Using tablespaces to segregate objects also simplifies tuning later on. Oracle
implements I/O activity at the level of the datafile, or the physical object the
operating system sees as a file, and each file is a part of only one tablespace, as
described in Chapter 4. Placing specific objects in specific tablespaces allows you
to accurately measure and direct the I/O for those objects by tracking and mov-
ing the underlying datafiles as needed.

For example, consider a database with several large, busy tables. Placing multi-
ple large tables in a single tablespace makes it difficult to determine which table
is causing the I/O to the underlying datafiles. Segregating the objects allows you
to directly monitor the I/O associated with each object. Your Oracle documenta-
tion details the other factors to consider in mapping objects to tablespaces.

Place redo logs and redo log mirrors on the two least-busy devices
This placement maximizes throughput for transactional systems. Oracle writes
to all copies of the redo log file, and this I/O is not completed until all copies
have been successfully written to. If you have two copies of the redo log file, one
on a slow device and the other on a fast device, your redo log I/O performance
will be constrained by the slower device.

162 | Chapter 7: Oracle Performance

As described in Chapter 8, Oracle Database 10g Release 2 gives you the option
of delaying write operations to the redo log for transactions. This capability can
improve performance in very high transactional environments, but carries with it
the possibility of losing committed data if your database crashes.

Distribute “system overhead” evenly over the available drives
System overhead consists of I/O to the SYSTEM tablespace for the data dictio-
nary, the TEMP tablespace for sorting, and the tablespaces that contain rollback
segments for undo information. You should consider the system profile in
spreading the system overhead over multiple drives. For example, if the applica-
tion generates a lot of data changes versus data reads, the I/O to the rollback
segments may increase due to higher writes for changes and higher reads for
consistent read functionality.

Sort activity can also affect disk I/O. Prior to Oracle Database 10g, you would
get the majority of sorts to occur in memory through tuning the SORT_AREA_
SIZE parameter in the initialization file. Oracle constantly queries and updates
the data dictionary stored in the SYSTEM tablespace, and this information is
cached in the shared pool section of the SGA, so sizing your shared pool
properly is a key to overall performance. As of Oracle Database 10g, Oracle can
automatically and dynamically size the different pools in the SGA.

Use a different device for archiving and redo log files
To avoid archiving performance issues due to I/O contention, make sure that the
archive log destination uses different devices from those used for the redo logs
and redo log mirrors.

Some other file placement issues to consider from the perspective of database avail-
ability include the following:

If you are directing database backups to disk, store the backups on devices that don’t
contain any database components

This protects the system from the potential loss of the database and the needed
backups from the failure of an I/O device.

Make sure the device used for the archive log destination doesn’t contain any database
components or database backups

If the failure of a single device results in the loss of both database components
and archived redo logs, or backup components and archived redo logs, recovery
will be endangered.

Fault-tolerant disk arrays don’t eliminate the need for a sound backup and recovery
strategy. Fault-tolerant storage merely reduces the likelihood of undergoing database
recovery due to the failure of a single drive. For full coverage of Oracle databases and
high availability, see Chapter 11.

Oracle and Disk I/O Resources | 163

Using RAID Disk Array Technology
One of the most powerful ways to reduce performance bottlenecks due to disk I/O is
the use of RAID disk arrays. RAID stands for Redundant Array of Inexpensive (or
Independent) Disks and is used to group disks into arrays for two reasons: redun-
dancy and performance. The use of RAID for redundancy is detailed in Chapter 11.
Our focus in this chapter is on the performance aspects of RAID technology.

RAID groups disk drives into arrays to automatically spread I/O operations across
multiple spindles, reducing contention on individual drives. For example, suppose
you place a datafile containing an index on a single drive. If multiple processes use
the index simultaneously, they will all issue I/O requests to the one disk drive, result-
ing in contention for the use of that drive.

RAID Basics
RAID disk arrays provide a hardware solution for both reliability and performance.
There are different levels of RAID hardware; the following are most relevant to
performance:

RAID-0
Where availability isn’t a concern, the disks can be configured as RAID-0, which
is nonredundant disk striping.

RAID-1
Provides the simplest form of redundancy, full duplication of data, which is
referred to as mirroring.

RAID-0+1
Combines the one-to-one mirroring of RAID-1 with the striping of RAID-0.

RAID-3
Provides redundancy by storing parity information on a single disk in the array.
This parity information can help to recover the data on other disks, should they
fail. RAID-3 saves on disk storage compared to RAID-1, but isn’t often used
because the parity disk can be a bottleneck.

RAID-5
Uses parity data for redundancy in a way that is similar to RAID-3, but stripes the
parity data across all of the disks, like the way in which the actual data is striped.
This alleviates the bottleneck on the parity disk.

There are additional levels of RAID, including RAID-6, which adds dual parity data,
and RAID-7 and RAID-8, which add performance enhancements to the characteristics
of RAID-5.

164 | Chapter 7: Oracle Performance

Instead, suppose you placed the same datafile on a “disk” that was actually an array
of five physical disks. Each physical disk in the array can perform I/O operations
independently on different data blocks of the index, automatically increasing the
amount of I/O Oracle can perform without causing contention.

Simply using disk arrays won’t, by itself, give you optimal I/O performance. As dis-
cussed earlier, you also need to logically place the different types of Oracle files
across the available drives, even if the drives are grouped into arrays. As of Oracle
Database 10g, striping considerations are made simpler through Automatic Storage
Management. ASM provides automatic striping and rebalancing of stripe sets. By
default, ASM also provides automated mirroring.

Volume managers

With host-based striping, logical volume-management software runs on the database
server. Examples of this type of software often used under older Oracle database
releases include Hewlett Packard’s Logical Volume Manager (LVM) and Veritas Soft-
ware’s Volume Manager. The LVM acts as an interface between the operating system
that requests I/O and the underlying physical disks. Volume-management software
groups disks into arrays, which are then seen by the operating system as single
“disks.” The actual disks are usually individual devices attached to controllers or
disks contained in a prepackaged array containing multiple disks and controllers.
This striping is handled by the volume-management software and is completely
transparent to Oracle. Figure 7-1 illustrates host-based volume management.

Figure 7-1. Host-based volume management

Oracle Instance

Operating System

Volume Manager

Database Server

Volume 1
RAID-5 Array

Volume 2
RAID-5 Array

Volume 3
RAID-1 Array

Oracle and Disk I/O Resources | 165

Oracle began providing its own volume manager software for Linux and Windows in
Oracle9i Release 2. Since Oracle Database 10g, database releases for all supported
operating systems include a cluster file system and volume manager in the database
that is leveraged by ASM. When using ASM, it is recommended that you not try to
leverage an operating system volume manager.

Dedicated storage subsystems

Dedicated storage systems, often referred to as disk farms, contain disks, controllers,
CPUs, and (usually) memory used as an I/O cache. Vendors include EMC, Network
Appliance, Hewlett-Packard, IBM, and Sun. These subsystems offload the task of
managing the disk arrays from the database server. The I/O subsystem is attached to
the server using controllers. These dedicated storage devices are sometimes grouped
into storage area networks (SANs) to denote their logical organization as a separate
set of networked devices. The disk arrays are defined and managed within the dedi-
cated I/O subsystem, and the resulting logical “disks” are seen by the operating
system as physical disks.

This type of disk-volume management is completely transparent to the database
server and offers many benefits:

• The database server does not spend CPU resources managing the disk arrays.

• The I/O subsystem uses memory for an I/O cache, so the performance of Oracle
I/O can improve significantly (for example, from an average I/O time of 10–12
milliseconds to 3–5 milliseconds).

• Write I/O is completed as soon as the data has been written to the subsystem’s
cache.

• The I/O subsystem will destage the data from cache to actual disk later.

• Read I/O can be satisfied from the cache. The subsystem can employ some type
of algorithm to sense I/O patterns and preload the cache in anticipation of pend-
ing read activity.

Note that you must back up the cache with some type of battery so a power failure
doesn’t result in the loss of data that was written to the cache, but hasn’t yet been
destaged to the physical disk. Otherwise, data that Oracle assumes made it to disk
may be lost, thereby potentially corrupting the database. Figure 7-2 illustrates a data-
base server with a dedicated I/O subsystem.

Combined host-based and I/O subsystem volume management

In this configuration, disks are grouped into arrays within the I/O subsystem and
grouped again into coarser arrays using operating system volume management. On
EMC systems, for example, the physical disks are grouped into either RAID-1 mir-
rored disk pairs or into a RAID-S striped configuration using four disks per stripe set.

166 | Chapter 7: Oracle Performance

(RAID-S is the term EMC [http://www.emc.com] uses for its specialized striping hard-
ware and software.)

Using EMC technology as an example, the operating system sees horizontal sections of
disk space across each RAID-1 disk or RAID-S array as single “disks.” You can use the
operating system volume management to group these “disks” into arrays. With RAID-1
disks, this configuration delivers the benefits of using a dedicated I/O subsystem with
its own cache and processing power while leveraging striping for simplicity. With
RAID-S arrays you get the benefit of the dedicated I/O subsystem and further simplify
disk management by a striping multiplier effect. An array of five “disks” at the oper-
ating system level could map back to five arrays of four disks each in the I/O
subsystem. This configuration maps a logical disk seen by Oracle to 20 physical disks
in the underlying I/O subsystem. Figure 7-3 illustrates a logical drive on the data-
base server mapping to horizontal sections across multiple RAID-S arrays.

Flexibility, Manageability, and Disk Arrays
Many systems today use some type of RAID technology that groups multiple individ-
ual disk drives, also referred to as spindles, into arrays. Each disk array is then treated

Figure 7-2. Dedicated I/O subsystems

Oracle Instance

Operating System

I/O Memory Cache

Volume 1
RAID-5 Array

Volume 2
RAID-5 Array

Volume 3
RAID-1 Array

Volume Manager

Database Server

Dedicated I/O Subsystem

Oracle and Disk I/O Resources | 167

as a single logical disk for the purpose of planning I/O. Striping allows you to simply
spread I/O across multiple disks, without incurring the planning and administrative
overhead of dealing with many individual disk drives.

The decision about how many disks should be in each array is often the topic of
intense debate. At one extreme, using multiple disks without grouping any of them
into arrays provides the most control and flexibility because every disk is visible and
can be targeted in isolation by placing certain files on each disk. However, this
approach requires more planning and can result in more ongoing administration,
because you will have to deal with every individual disk drive. As databases become
larger and larger, this approach can become unmanageable.

At the other extreme, you can group all disks into one single array, seen by the
operating system and Oracle as a single “disk.” This makes for extremely simple
planning and administration; no effort is required to analyze where you should place
the various files, as there is only one “disk.” However, this approach sacrifices flexi-
bility and leads to brute-force solutions to I/O bottlenecks. If I/O performance across
the array is unsatisfactory, the solution is to add more controllers and disks. The
entire set of disks becomes a black box that either works or doesn’t work as a unit.

Figure 7-3. Combining host-based striping and an EMC I/O subsystem

Disk 5

Oracle Instance

Operating System

I/O Memory Cache

Volume Manager

RAID-5 Array RAID-5 Array RAID-5 Array RAID-5 Array RAID-5 Array

Logical Disk A

Disk 1 Disk 2 Disk 3 Disk 4

Database Server

Dedicated I/O Subsystem

Volume Manager

168 | Chapter 7: Oracle Performance

The most useful configuration is one that balances manageability with flexibility. For
example, consider a system with 1,000 disks. Neither a single array of 1,000 disks
nor a set of 1,000 individual disks is likely to be appropriate. Perhaps 50 arrays of 20
disks each would provide the needed I/O performance without any undue adminis-
trative burden. If less flexibility is needed, 20 arrays of 50 disks are more suitable. On
the other hand, grouping all the disks into one array may be the simplest way to
manage a system with only five disks. For the “right” answer, you must assess your
needs to determine the appropriate balance.

Oracle Database 10g simplified this by automating the striping and stripe set rebal-
ancing process. ASM divides files into 1 MB extents and spreads the extents evenly
across each disk group. Pointers are used to track placement of each extent (instead
of using a mathematical function such as a hashing algorithm to stripe the data). So
when the disk group configuration changes, individual extents can be moved. In
comparison to traditional algorithm-based striping techniques, the need to rerun that
algorithm and reallocate all of the data is eliminated. Extent maps are updated when
rebalancing the load after a change in disk configuration, opening a new database
file, or extending a database file by enlarging a tablespace. By default, each 1 MB
extent is also mirrored, so management of redundancy is also simplified. Mirroring
can be extended to triple mirroring or can be turned off. Although you still have to
consider how many disk groups to use, implementation of these groups with strip-
ing and redundancy is automated with ASM.

Shortly after the initial release of Oracle Database 11g, Oracle exposed additional
storage management capabilities in the database. These features are especially useful
in configuring storage for Oracles’s Information Appliances, described in Chapter 8.

How Oracle I/O and Striped Arrays Interact
In almost all large databases, disk striping increases disk I/O rates without adding too
heavy an administrative burden for managing a large number of datafiles across many
individual disks. The disks may be organized into RAID arrays using a volume manager
on the database server, a dedicated I/O subsystem, or a combination of both.

If you are using an Oracle release without ASM, when you set up striped disk arrays,
you can set the chunk size used to stripe across the disks. The chunk size is the
amount of data written to one disk before moving to the next disk in the array.
Understanding the interaction between different stripe chunk sizes and the two sizes
of Oracle I/O is critical in maximizing your I/O performance.

Consider an Oracle database with an 8 KB data block size and the DB_FILE_
MULTIBLOCK_READ_COUNT initialization parameter set to 32. There will be two
sizes of I/O by Oracle: a single 8 KB data block and a 256 KB multiblock read (32 times
8 KB). Suppose you configure a four-disk array for use by Oracle with a chunk size of 64
KB so that the 256 KB of data will be spread across the four drives, with 64 KB on each.

Oracle and Parallelism | 169

Each 8 KB I/O will hit one spindle, as the 8 KB will lie within one 64 KB chunk.*

Striping can increase performance for small I/Os by maximizing concurrency: each
disk can service a different I/O. The multiblock I/Os of 256 KB may hit all four disks.
If the chunk size were 256 KB instead of 64 KB, on average each 256 KB I/O call
would hit one disk. In this case, the multiblock I/O will require fewer I/O calls with a
larger chunk size on the disks. In either case, a single disk will clearly satisfy single-
data-block I/O calls. Striping can increase I/O rates for large reads by driving
multiple disks with a single I/O call, as illustrated with a 64 KB chunk size and a
256 KB multiblock I/O.

Figure 7-4 illustrates the interaction of different-sized Oracle I/Os with arrays striped
using different chunk sizes.

Oracle and Parallelism
The ability to parallelize operations is one of the most important features of the Very
Large Database (VLDB). Database servers with multiple CPUs, which are called
symmetric multiprocessing (SMP) machines, are the norm today for most database
servers, and the ability to perform operations in parallel also works well with multi-
core CPU chips. As performance demands increase and data volumes continue to
grow, you will increasingly need to use multiple processors, cores and disks to reduce

* It’s difficult to say exactly what will occur due to the alignment of the stripe-chunk boundaries with Oracle
data blocks, but to illustrate the single versus multiple disk point, let’s assume the simple case—they line up!
For a more detailed discussion of striping issues, see the document “Configuring Oracle Server for VLDB,”
by Cary Millsap, formerly of Oracle Corporation and now with Hotsos (see Appendix B). Anyone who is
tempted is welcome to perform detailed testing for all the permutations of stripe chunk size and Oracle I/O.
If you happen to perform this extensive testing, please tell all the rest of us what you find!

Figure 7-4. Oracle I/O and chunk size interaction

Oracle 256-KB I/O Call Oracle 256-KB I/O Call

Chunk Size

One
256-KB I/O

drives all
four disks

One
256-KB I/O

hits
one disk

256 KB 256 KB 256 KB 256 KB
64 KB 64 KB 64 KB 64 KB

Oracle
8-KB I/O

Call

Oracle
8-KB I/O

Call

Oracle
8-KB I/O

Call

Oracle
8-KB I/O

Call

Each 8-KB
I/O hits one

disk

170 | Chapter 7: Oracle Performance

the time needed to complete a given task. Oracle supports parallelism within a single
SMP server and parallelism across multiple nodes, using Oracle Real Application Clus-
ters. Executing a SQL statement in parallel will consume more of the machine
resources—CPU, memory, and disk I/O—but complete the overall task faster.

Parallelism affects the amount of memory and CPU resources used to execute a given
task in a fairly linear fashion—the more parallel processes used, the more resources
consumed for the composite task. Each parallel execution process has a Program
Global Area (PGA) that consumes memory and performs work. Each parallel execu-
tion process takes its own slice of CPU, but more parallel processes can reduce the
total amount of time spent on disk I/O, which is the place in which bottlenecks can
most readily appear.

Two types of parallelism are possible within an Oracle database:

Block-range parallelism
Driven by ranges of database blocks

Partition-based parallelism
Driven by the number of partitions or subpartitions involved in the operation

The following sections describe these types of parallelism.

Block-Range Parallelism
In 1994, Oracle 7.1 introduced the ability to dynamically parallelize table scans and a
variety of scan-based functions. This parallelism was based on the notion of block
ranges, in which the Oracle server would understand that each table contained a set
of data blocks that spanned a defined range of data. Oracle7 implemented block-
range parallelism by dynamically breaking a table into pieces, each of which was a
range of blocks, and then used multiple processes to work on these pieces in paral-
lel. Oracle’s implementation of block-range parallelism was unique in that it didn’t
require physically partitioned tables, described in Chapter 4, to achieve parallelism.

With block-range parallelism, the client session that issued the SQL statement trans-
parently becomes the parallel execution coordinator, dynamically determining block
ranges and assigning them to a set of parallel execution (PE) processes. Once a PE
process has completed an assigned block range, it returns to the coordinator for
more work. Not all I/O occurs at the same rate, so some PE processes may process
more blocks than others. This notion of “stealing work” allows all processes to par-
ticipate fully in the task, providing maximum leverage of the machine resources.

Block-range parallelism scales linearly based on the number of PE processes, pro-
vided you have adequate hardware resources. The key to achieving scalability with
parallelism lies in hardware basics. Each PE process runs on a CPU and requests I/O
to a device. If you have enough CPUs reading enough disks, parallelism will scale. If
the system encounters a bottleneck on one of these resources, scalability will suffer.

Oracle and Parallelism | 171

For example, four CPUs reading two disks will not scale much beyond the two-way
scalability of the disks and may even sink below this level if the additional CPUs
cause contention for the disks. Similarly, 2 CPUs reading 20 disks will not scale to a
20-fold performance improvement. The system hardware must be balanced for paral-
lelism to scale.

Most large systems have far more disks than CPUs. In these systems, parallelism
results in a randomization of I/O across the I/O subsystem. This is useful for concur-
rent access to data as PE processes for different users read from different disks at
different times, resulting in I/O that is distributed across the available disks.

A useful analogy for dynamic parallelism is eating a pie. The pie is the set of blocks
to be read for the operation, and the goal is to eat the pie as quickly as possible using
a certain number of people. Oracle serves the pie in helpings, and when a person fin-
ishes his first helping, he can come back for more. Not everyone eats at the same
rate, so some people will consume more pie than others. While this approach in the
real world is somewhat unfair, it’s a good model for parallelism because if everyone
is eating all the time, the pie will be consumed more quickly. The alternative is to
give each person an equal serving and wait for the slower eaters to finish.

Figure 7-5 illustrates the splitting of a set of blocks into ranges.

Parallelism for Tables and Partitions of Tables
With partitioned tables, introduced in Oracle8, an operation may involve one, some,
or all of the partitions of a partitioned table. There is essentially no difference in how
block-range parallelism dynamically splits the set of blocks to be read for a regular
table as opposed to a partitioned table. Once the optimizer has determined which

Figure 7-5. Dynamic block-range parallelism

PE
Process

PE
Process

Each
section is
a range of
blocksResult: Everyone eats all the time

One pie Served in helpings

172 | Chapter 7: Oracle Performance

partitions should be accessed for the operation, all the blocks of all partitions
involved are treated as a pool to be broken into ranges.

This assumption by the optimizer leads to a key consideration for using parallelism
and partitioned tables. The degree of parallelism (i.e., the number of parallel execu-
tion processes used for the table as a whole) is applied to the set of partitions that
will be used for an operation. The optimizer will eliminate the use of partitions that
do not contain data an operation will use. For instance, if one of the partitions for a
table contains ID numbers below 1,000, and if a query requests ID numbers between
1,100 and 5,000, the optimizer understands that this query will not access this
partition.

Since Oracle9i, you can also partition tables based on a list of specific values,
although this type of partitioning is typically used to partition tables for mainte-
nance operations. As explained in Chapter 4, Oracle has continued to add more
choices in ways to implement partitioning.

If you expect that your queries will use partition elimination or pruning and you plan
on using parallelism, you should stripe each partition over a sufficient number of
drives to scale effectively. This will ensure scalability regardless of the number of par-
titions accessed. This striping can be achieved manually through the use of multiple
datafiles on multiple disks, through the use of striped arrays, or through a combina-
tion of both approaches.

What Can Be Parallelized?
Oracle can parallelize far more than simple queries. The list of operations that can be
parallelized using block-range parallelism includes the following:

• Tablespace creation

• Index creation and rebuilds

• Online index reorganizations and rebuilds

• Index-organized table reorganizations and movements

• Table creation, such as summary creation using CREATE TABLE...AS SELECT

• Partition-maintenance operations, such as moving and splitting partitions

• Data loading

• Integrity constraints imposing

• Statistics gathering (automatically gathered since Oracle Database 10g)

• Backups and restores (including very large files in Oracle Database 11g)

• DML operations (INSERT, UPDATE, DELETE)

• Query processing operations

• OLAP aggregate (as of Oracle Database 10g)

Oracle and Parallelism | 173

Oracle can also provide the benefits of parallelism to individual processing steps for
queries. The specific features of query processing that may be parallelized include:

• Table scans

• Nested loops

• Sort merge joins

• Hash joins

• Bitmap star joins

• Index scans

• Partition-wise joins

• Anti-joins (NOT IN)

• SELECT DISTINCT

• UNION and UNION ALL

• ORDER BY

• GROUP BY

• Aggregations

• Import

• User-defined functions

Degree of parallelism

An Oracle instance has a pool of parallel execution (PE) processes that are available to
the database users. Controlling the number of active PE processes was an important
task in older Oracle database releases; too many PE processes would overload the
machine, leading to resource bottlenecks and performance degradation. A high degree
of parallelism will also force full-table scans and this may or may not be appropriate.
Figure 7-6 illustrates transparent parallelism within and between sets of PE processes.

Figure 7-6. Intra-operation and inter-operation parallelism

• Coordinator allocates PE processes and divides task into subtasks
• Each “set” of PE processes performs a different task (e.g., sorting, joining)
• Results are “pipelined” from one set of PE processes to the next

Results

Coordinator

PE
process

PE
process

PE
process

PE
process

PE
process

PE
process

Coordinator

SQL

174 | Chapter 7: Oracle Performance

Determining the optimal degree of parallelism in the presence of multiple users and
varying workloads proved challenging. For example, a degree of 8 for a query would
provide excellent performance for 1 or 2 users, but what if 20 users queried the same
table? This scenario called for 160 PE processes (8 PEs for each of the 20 users),
which could overload the machine.

Setting the degree to a lowest common denominator value (for example, 2) provided
effective parallelism for higher user counts, but did not leverage resources fully when
fewer users are active.

Self-tuning adaptive parallelism

Oracle8i introduced the notion of self-tuning adaptive parallelism. This feature auto-
matically scales down parallelism as the system load increases and scales it back up
as the load decreases. When an operation requests a degree of parallelism, Oracle
will check the system load and lower the actual degree the operation uses to avoid
overloading the system. As more users request parallel operations, the degree they
receive will become lower and lower until operations are executing serially. If activ-
ity decreases, subsequent operations will be granted increasing degrees of parallel-
ism. This adaptability frees the DBA from the difficult task of trying to determine the
optimal degree of parallelism in the face of constant changes in workload.

Adaptive parallelism takes two factors into account in determining the degree of par-
allelism granted to an operation:

• System load.

• Parallelism resource limitations of the user’s consumer group if the Database
Resource Manager is active. (The Database Resource Manager is explained in
Chapter 9 and also later in this chapter.) This is important, because it means
that adaptive parallelism respects resource plans if they’re in place.

Partition-Based Parallelism
A small subset of Oracle’s parallel functionality is based on the number of partitions or
subpartitions accessed by the statement to be parallelized. For block-range parallelism,
the piece of data each PE process works on is a range of blocks. For partition-based
parallelism, the pieces of data that drive parallelism are partitions or subpartitions of a
table. The operations in which parallelism is based on the number of partitions or
subpartitions include the following:

• Updates and deletes

• Index scans

• Index creation and rebuilds on partitioned tables

Oracle and Parallelism | 175

Parallelism for partitions and subpartitions of a table

Oracle8 introduced support for parallel Data Manipulation Language (DML), or the
ability to execute INSERT, UPDATE, and DELETE statements in parallel. This type
of parallelism improves the performance of large bulk operations (for example, an
update to all the rows of a very large table).

In Oracle8 the degree of parallelism for updates and deletes is tied to the number of
partitions involved, while in Oracle8i and beyond the degree of parallelism for
updates and deletes is tied to the number of partitions or subpartitions involved. A
table with 12 partitions (for example, one partition for each month of the year) can
have a maximum number of 12 PEs for an update or delete. An update to only one
month of data would have no parallelism because it involves only one partition. If
the table were created using Oracle’s composite partitioning (for example, with 4
hash subpartitions by PRODUCT_ID within each month), the maximum degree of
parallelism for the entire table would be 48, or 12 partitions with 4 subpartitions
each. An update to one month of data could have a degree of 4 because each month
contains 4 hash subpartitions. If the table is not partitioned, Oracle cannot perform
updates or deletes in parallel.

Oracle8 and later versions can execute index creation, index rebuilds, and index
scans for partitioned indexes in parallel using the same semantics as parallel DML:
one PE process per partition or subpartition of the index.

Fast full index scans for nonpartitioned tables

People often assume that the Oracle database can parallelize index scans only if the
target index is partitioned. Oracle 7.3 introduced the ability to perform parallel index
scans on nonpartitioned indexes for a certain case. If the index scan operation were
“unbounded,” meaning that the entire index was going to be accessed to satisfy the
query, then Oracle 7.3 and higher would use block-range parallelism to access the
entire index in parallel. While Oracle can perform index scans for nonpartitioned
indexes, this feature applies to a narrow set of queries. Partition-based index scans
apply to a much broader range of queries.

Parallel insert for nonpartitioned and partitioned tables

Oracle can execute an INSERT statement of the form INSERT INTO tableX
SELECT...FROM tableY in parallel for nonpartitioned and partitioned tables.
Oracle uses a set of PE processes executing block-range parallelism for the SELECT
portion of the INSERT statement. These PE processes pass the rows to a second set
of PE processes, which insert the rows into the target table. The target table can be a
nonpartitioned or partitioned table. Parallelism for an insert is not exactly block-
range or partition-based.

176 | Chapter 7: Oracle Performance

Oracle and Memory Resources
Accessing information in memory is much faster than accessing information on a
disk. An Oracle instance uses the database server’s memory resources to cache the
information accessed to improve performance. Oracle utilizes an area of shared
memory called the System Global Area (SGA) and a private memory area for each
server process called the Program Global Area (PGA).

Prior to Oracle9i, you could only specify the size for the SGA or any of its compo-
nents—database buffer cache, shared pool, or large pool—in the initialization file,
and the size of these memory allocations could not be changed without shutting
down and restarting the instance. Oracle9i enabled dynamic resizing of these pools
based on a minimum memory allocation called a granule. Oracle Database 10g and
later releases can automatically manage shared memory. Oracle Database 11g adds
automatic memory management of the SGA and PGA.

Exhausting a database server’s supply of memory will cause poor performance. If you
are running an older release of Oracle, you should gauge the size of the various mem-
ory areas Oracle uses or add more memory to the machine to prevent a memory defi-
cit from occurring. What constitutes the right size for the various areas is a function
of your application behavior, the data it uses, and your performance requirements.

How Oracle Uses the System Global Area
Oracle uses the SGA for the following operations:

• Caching of database blocks containing table and index data in the database
buffer cache

• Caching of parsed and optimized SQL statements, stored procedures, and data
dictionary information in the shared pool

• Buffering of redo log entries in the redo log buffer before they’re written to disk

In versions prior to Oracle 9i, the amount of memory allocated to each of these areas
within the SGA was determined at instance startup using initialization parameters
and could not be altered without restarting the instance.

The majority of tuning efforts focused on the database buffer cache and the shared
pool.

Automatic sizing for the SGA

Oracle Database 10g eliminated manual tuning of SGA pools with automatic sizing
for the SGA. Using automatic shared memory management, the database automati-
cally allocates memory for the following SGA pools: database buffer cache, shared
pool, large pool, Java pool, and Streams pool. You have to specify only the total
amount of memory required by setting the SGA_TARGET initialization parameter.

Oracle and Memory Resources | 177

Since Oracle Database 10g, the database proactively monitors the memory require-
ments for each pool and dynamically reallocates memory when appropriate. You can
also specify the minimum amount of memory for any of the SGA pools while using
automatic SGA sizing using the following initialization parameters: DB_CACHE_
SIZE, SHARED_POOL_SIZE, LARGE_POOL_SIZE, JAVA_POOL_SIZE, and
STREAMS_POOL_SIZE. A few SGA pools, specified using such parameters as
LOG_BUFFER, DB_KEEP_CACHE_SIZE, and DB_RECYCLE_CACHE_SIZE, are
still manually sized.

The database buffer cache

If you decide to disable SGA_TARGET by setting it to 0, you will need to manually
set initialization parameters for the memory pools (unless you want to use previous
sizes). For the database buffer cache, you would assess the percentage of the data-
base blocks requested by users read from the cache versus from the disk. This
percentage is termed the hit ratio. If response times are too high and this ratio is
lower than 90% (as a rule of thumb), increasing the value of the initialization param-
eter DB_CACHE_SIZE can increase performance.

You can use Oracle Enterprise Manager to get information about the
cache hit ratio.

It’s tempting to assume that continually increasing the size of the database buffer
cache will translate into better performance. However, this is true only if the data-
base blocks in the cache are actually being reused. Most OLTP systems have a
relatively small set of core tables that are heavily used (for example, lookup tables for
things such as valid codes). The rest of the I/O tends to be random, accessing a row
or two in various database blocks in the course of the transaction. Because of this,
having a larger buffer cache may not contribute to performance since there isn’t
much reuse of data blocks occurring.

In addition, not all operations read from the database buffer cache. For example,
large full-table scans are limited to a small number of buffers to avoid adversely
impacting other users by dominating the cache. If your application performs a lot of
table scans, increasing the buffer cache may not help performance because the cache
will not contain the needed data blocks. Parallel table scans completely bypass the
buffer cache and pass rows directly to the requesting user process. As with most per-
formance issues, your understanding of how your application is actually using your
data is the key that will help guide your database buffer-cache tuning.

The shared pool

The shared pool is used at several points during the execution of every operation that
occurs in an Oracle database. For example, the shared pool is accessed to cache the

178 | Chapter 7: Oracle Performance

SQL sent to the database and for the data dictionary information required to execute
the SQL. Because of its central role in database operations, a shared pool that is too
small may have a greater impact on performance than a database buffer cache that is
too small. If the requested database block isn’t in the database buffer cache, Oracle
will perform an I/O to retrieve it, resulting in a one-time performance hit.

A shared pool that is too small will cause poor performance for a variety of reasons,
affecting all users. These reasons include the following:

• Not enough data dictionary information can be cached, resulting in frequent
disk access to query and update the data dictionary.

• Not enough SQL can be cached, leading to memory “churn,” or the flushing of
useful statements to make room for incoming statements. A well-designed appli-
cation issues the same statements repeatedly. If there isn’t enough room to cache
all the SQL the application uses, the same statements get parsed, cached, and
flushed over and over, wasting valuable CPU resources and adding overhead to
every transaction.

• Not enough stored procedures can be cached, leading to similar memory churn
and performance issues for the program logic stored and executed in the
database.

If you are manually managing the shared pool and you’ve diagnosed which of these
problems is occurring, the solution is fairly simple: increase the size of the shared
pool using the SHARED_POOL_SIZE initialization parameter. Shared pool sizes in
the 150–250 MB range are not uncommon for large, active databases. For more
information about examining shared pool activity to identify problems, see the
appropriate Oracle Performance Tuning Guide, as well as the third-party books listed
in Appendix B.

The redo log buffer

While the redo log buffer consumes a very small amount of memory in the SGA rela-
tive to the database buffer cache and the shared pool, it’s critical for performance.
Transactions performing changes to the data in the database write their redo infor-
mation to the redo log buffer in memory. The redo log buffer is flushed to the redo
logs on disk when a transaction is committed (normally) or when the redo log buffer
is one-third full. Oracle “fences” off the portion of the redo log buffer that’s being
flushed to disk to make sure that its contents aren’t changed until the information is
safely on disk. Transactions can continue to write redo information to the rest of the
redo log buffer (the portion that isn’t being written to disk and therefore isn’t fenced
off by Oracle). In a busy database, transactions may generate enough redo to fill the
remaining unfenced portion of the redo log buffer before the I/O to the disks for the
fenced area of the redo log buffer is complete. If this happens, the transactions will
have to wait for the I/O to complete because there is no more space in the redo log
buffer. This situation can impact performance. The statistic “redo buffer allocation

Oracle and Memory Resources | 179

retries” can be used to understand this situation. It is available through V$SYSSTAT
and is an indication of how often a session waited for space in the redo log buffer. An
example of the query you may use to obtain the statistic is:

SELECT name, value FROM V$SYSSTAT
 WHERE name = 'redo buffer allocation retries';

You would monitor these statistics over a period of time to gain insight into the
trend. The values at one point in time reflect the cumulative totals since the instance
was started and aren’t necessarily meaningful as a single data point. Note that this is
true for all statistics used for performance tuning. Ideally, the value of “redo buffer
allocation retries” should be close to 0. If you observe the value rising during the
monitoring period, you would increase the size of the redo log buffer by resetting the
LOG_BUFFER initialization parameter.

Query results caching

One of the most significant performance features in Oracle Database 11g can be used
to help improve the performance of repeated queries. Oracle caches database and
index blocks, eliminating the need to perform resource-intensive disk reads. Oracle
caches SQL plans, eliminating the need to reparse and optimize queries. But prior to
Oracle Database 11g, a cached SQL plan would still have to execute and assemble a
result set.

The new feature allows Oracle Database 11g to cache the completed result set in the
shared pool. This new functionality means that a repeated query requesting the same
result set can simply take that result set completely from memory. Since the result
sets have to be the same for this feature to work, the query results cache has the big-
gest impact on situations like web page serving, where the same page is being
retrieved repeatedly. This feature also works on the results of PL/SQL functions.

Oracle Database 11g also includes the ability to cache query result sets on the client,
while automatically keeping the result set consistent with any changes that could
affect it. This feature gives the performance benefits of query result set caching on
the server while eliminating network roundtrips as an added benefit.

How Oracle Uses the Program Global Area
Each server has a Program Global Area (PGA), which is a private memory area that
contains information about the work the server process is performing. There is one
PGA for each server process. The total amount of memory used for all the PGAs is a
function of the number of server processes active as part of the Oracle instance. The
larger the number of users, the higher the number of server processes and the larger
the amount of memory used for their associated PGAs. Using the Multi-Threaded
Server (known as the shared server from Oracle9i on) reduces total memory con-
sumption for PGAs because it reduces the number of server processes.

180 | Chapter 7: Oracle Performance

The PGA consists of a working memory area for things such as temporary variables
used by the server process, memory for information about the SQL the server pro-
cess is executing, and memory for sorting rows as part of SQL execution. The initial
size of the PGA’s working memory area for variables, known as stack space, cannot
be directly controlled because it’s predetermined based on the operating system you
are using for your database server. The other areas within the PGA can be controlled
as described in the following sections.

Memory for SQL statements

When a server process executes a SQL statement for a user, the server process tracks
the session-specific details about the SQL statement and the progress by executing it
in a piece of memory in the PGA called a private SQL area, also known as a cursor.
This area should not be confused with the shared SQL area within the shared pool.
The shared SQL area contains shareable details for the SQL statement, such as the
optimization plan. Optimizers and optimization plans are discussed in Chapter 4.

The private SQL area contains the session-specific information about the execution
of the SQL statement within the session, such as the number of rows retrieved so far.
Once a SQL statement has been processed, its private SQL area can be reused by
another SQL statement. If the application reissues the SQL statement whose private
SQL area was reused, the private SQL area will have to be reinitialized.

Each time a new SQL statement is received, its shared SQL area must be located (or,
if not located, loaded) in the shared pool. Similarly, the SQL statement’s private SQL
area must be located in the PGA or, if it isn’t located, reinitialized by the server pro-
cess. This reinitialization is relatively expensive in terms of CPU resources.

A server process with a PGA that can contain a higher number of distinct private
SQL areas will spend less time reinitializing private SQL areas for incoming SQL
statements. If the server process doesn’t have to reuse an existing private SQL area to
accommodate a new statement, the private SQL area for the original statement can
be kept intact. Although similar to a larger shared pool, a larger PGA avoids memory
churn within the private SQL areas. Reduced private SQL area reuse, in turn, reduces
the associated CPU consumption, increasing performance. There is, of course, a
trade-off between allocating memory in the PGA for SQL and overall performance.

OLTP systems typically have a “working set” of SQL statements that each user sub-
mits. For example, a user who enters car rental reservations uses the same forms in
the application repeatedly. Performance will be improved if the user’s server process
has enough memory in the PGA to cache the SQL those forms issue. Application
developers should also take care to write their SQL statements so that they can be
easily reused, by specifying bind variables instead of different hardcoded values in
their SQL statements.

Oracle and Memory Resources | 181

Memory for sorting within the PGA

Each server process uses memory in its PGA for sorting rows before returning them
to the user. If the memory allocated for sorting is insufficient to hold all the rows that
need to be sorted, the server process sorts the rows in multiple passes called runs.
The intermediate runs are written to the temporary tablespace of the user, which
reduces sort performance because it involves disk I/O.

Sizing the sort area of the PGA was a critical tuning point in Oracle database releases
prior to Oracle Database 10g. A sort area that was too small for the typical amount
of data requiring sorting would result in temporary tablespace disk I/O and reduced
performance. A sort area that was significantly larger than necessary would waste
memory.

As of Oracle Database 10g, the database provides automatic sizing for the PGA. By
default, this memory management is enabled, and sizing for PGA work areas is based
on 20 percent of the SGA memory size. By using automatic sizing for the PGA, you
eliminate the need to size individual portions of the PGA, such as SORT_AREA_
SIZE.

Oracle Database 11g introduced automatic memory management that spans both the
SGA and the PGA. By setting a single MEMORY_TARGET initialization parameter
(given that the PGA size can be based on a percentage of the SGA memory size), the
PGA and SGA will be automatically set to appropriate initial values. Oracle then
tunes memory for optimal SGA and PGA performance on an ongoing basis.

TimesTen
In 2005, Oracle acquired the leading in-memory database TimesTen. In-memory
databases provide optimal performance by reducing data retrieval latency. The opti-
mizer used with the TimesTen database is aware of the memory location of the data,
and creates execution plans to take advantage of this residency. In addition, the
actual number of machine instructions is significantly reduced, since there is no need
for code to handle situations where data resides only on disk. TimesTen is most
appropriate for a high-load OLTP environment that requires extremely high through-
put and real-time responsiveness.

A TimesTen instance can be used as a cache for an Oracle database. You load a sub-
set of Oracle tables into the TimesTen instance, and the Cache Connect to Oracle
feature keeps the data synchronized.

You can also enable replication between TimesTen instances on different machines
for load sharing and higher availability. For more information on TimesTen, please
refer to the relevant pages on the Oracle Technology Network.

182 | Chapter 7: Oracle Performance

Oracle and CPU Resources
The Oracle database shares the CPU(s) with all other software running on the server.
If there is a shortage of CPU power, reducing Oracle or non-Oracle CPU consump-
tion will improve the performance of all processes running on the server.

If all the CPUs in a machine are busy, the processes line up and wait for a turn to use
the CPU. This is called a run queue because processes are waiting to run on a CPU.
The busier the CPUs get, the longer processes can spend in this queue. A process in
the queue isn’t doing any work, so as the run queue gets longer, response times
degrade.

You can use the standard monitoring tools for your particular operat-
ing system to check the CPU utilization for that machine.

Tuning CPU usage is essentially an exercise in tuning individual tasks: it reduces the
number of commands required to accomplish the tasks and/or reduces the overall
number of tasks to be performed. You can do this tuning through workload balanc-
ing, SQL tuning, or improved application design. This type of tuning requires insight
into what these tasks are and how they’re being executed.

As mentioned earlier, an in-depth discussion of all the various tuning points for an
Oracle database is beyond the scope of this book. However, there is a set of common
tasks that typically result in excess CPU consumption. Some of the usual suspects to
examine if you encounter a CPU resource shortage on your database server include
the following:

Bad SQL
Poorly written SQL is the number one cause of performance problems. An Ora-
cle database attempts to optimally execute the SQL it receives from clients. If the
SQL contained in the client applications and sent to the database is written so
that the best optimization plan Oracle can identify is still inefficient, Oracle will
consume more resources than necessary to execute the SQL. Tuning SQL can be
a complex and time-consuming process because it requires an in-depth under-
standing of how Oracle works and what the application is trying to do. Initial
examinations can reveal flaws in the underlying database design, leading to
changes in table structures, additional indexes, and so on. Changing the SQL
requires retesting and a subsequent redeployment of the application—until Ora-
cle Database 10g.

Oracle Database 10g introduced the SQL Tuning Advisor, a tool that can not
only recognize poorly written SQL, but also create an optimizer plan to circum-
vent the problem and replace the standard optimization plan with the improved
plan. With this capability, you can improve the performance of poorly written

Oracle and CPU Resources | 183

SQL without changing any code in the application. The SQL Advisor in Oracle
Database 11g combines the functionality of the SQL Tuning Advisor, the SQL
Access Advisor, and the Partition Advisor.

In Oracle Database 11g, the database can automatically spot the SQL queries
with the largest loads and automatically create SQL profiles to improve their per-
formance, if appropriate. This process can also result in advice on new indexes
that could improve the performance of these statements.

Oracle Database 11g also tracks changes in execution plans for SQL statements,
described in Chapter 4. The optimizer can maintain the history of execution
plans, and when a new plan is detected, the optimizer uses the old plan and eval-
uates the performance of the new plan. Once the optimizer verifies that the new
plan can deliver the same performance, the old plan is replaced. This feature
does not directly relate to bad SQL, but rather to the occasional effects of plan
changes, which can result in unplanned performance degradation.

Excessive parsing
As we discussed in the section “Memory for SQL statements,” Oracle must parse
every SQL statement before it’s processed. Parsing is very CPU-intensive, involv-
ing a lot of data dictionary lookups to check that all the tables and columns
referenced are valid. Complex algorithms and calculations estimate the costs of
the various optimizer plans possible for the statement to select the optimal plan.
If your application isn’t using bind variables (discussed in Chapter 9), the
database will have to parse every statement it receives. This excessive and unnec-
essary parsing is one of the leading causes of performance degradation. Another
common cause is a shared pool that’s too small, as discussed previously in the
section “The shared pool.” Keep in mind that you can avoid the creation of exe-
cution plans by using stored outlines, as described in Chapter 4. And, as of
Oracle9i, you also have the ability to edit the hints that make up a stored out-
line. As described earlier, Oracle Database 11g includes the ability to cache
complete result sets, which can minimize the impact of repeated execution of
identical queries.

Database workload
If your application is well designed and your database is operating at optimal
efficiency, you may experience a shortage of CPU resources for the simple rea-
son that your server doesn’t have enough CPU power to perform all the work it’s
being asked to do. This shortage may be due to the workload for one database (if
the machine is a dedicated database server) or to the combined workload of mul-
tiple databases running on the server. Underestimating the amount of CPU
resources required is a chronic problem in capacity planning. Unfortunately,
accurate estimates of the CPU resources required for a certain level of activity
demands detailed insight into the amount of CPU power each transaction will
consume and how many transactions per minute or second the system will

184 | Chapter 7: Oracle Performance

process, both at peak and average workloads. Most organizations don’t have the
time or resources for the system analysis and prototyping required to answer
these questions. This is perhaps why CPU shortages are so common, and why
the equally common solution is to simply add more CPUs to the machine until
the problem goes away. Real Application Clusters and the grid are attempts to at
least make adding more CPU horsepower easier.

Nondatabase workload
Not all organizations have the luxury of dedicating an entire machine to an Ora-
cle database to ensure that all CPU resources are available for that database. Use
operating system utilities to identify the top CPU consumers on the machine.
You may find that non-Oracle processes are consuming the bulk of the CPU
resources and adversely impacting database performance.

Database Resource Manager
The previous section described some of the ways that you can end up with poor per-
formance through a lack of CPU resources. The Database Resource Manager (DRM)
was first introduced in Oracle8i and can help you automatically avoid some of these
problems.

DRM works by leveraging consumer groups you’ve identified and enabling you to
place limits on the amount of computer resources that can be used by that group.
Implementing the DRM ensures that one group or member of a group does not end
up using an excessive amount of any one resource, as well as acting to deliver guar-
anteed service levels for different sets of users. You can create DRM hierarchies in
which you specify the amount of resources for groups within groups.

The following DRM features can be combined to protect against poor performance:

Predicting resource utilization
The DRM can leverage the query optimizer cost computations to predict the
amount of resources that a given query will take and the query execution time.
Note that, by default, the query optimizer uses a CPU + I/O cost model since
Oracle Database 10g. In Oracle9i, the query optimizer used an I/O cost model
based on single block reads.

Switching consumer groups
The DRM can switch consumer groups dynamically. You might want to give a
particular consumer group a high allocation of CPU resources. But if a single
query from that group looks as if it will take up too many CPU resources and
affect the overall performance of the machine, the consumer group can be
switched to another group that has a smaller CPU allocation—for example, a
consumer group designed for batch operations.

Database Resource Manager | 185

Limiting number of connections
The DRM can limit the number of connections for any particular consumer
group. If the limit on connections for a group has been reached and another
connection request comes in, the connection request is queued until an existing
connection is freed. By limiting the overall number of connections for a con-
sumer group, you can place some rough limits on the overall resources that par-
ticular group might require.

In Oracle Database 11g, the database installs with a default DRM plan. The default
plan is designed to limit the amount of resources used by automated maintenance
tasks such as optimizer statistics gathering, the Automatic Segment Advisor, and the
Automatic SQL Tuning Advisor.

186

Chapter 8CHAPTER 8

Oracle Multiuser Concurrency 8

Sharing data is at the center of all information systems. As systems provide higher
and higher levels of functionality, we can sometime forget that the ability to effi-
ciently share data is the underlying governor of overall system performance. At the
same time, database systems must protect the integrity of the data, as the value of
that data is directly proportional to the correctness of the data. Database systems
must protect data integrity, while still providing high levels of performance for
multiuser access. These two forces sometimes conflict and shape some of the core
technology in any database system.

Data integrity must always come first. As Ken Jacobs, vice president at Oracle, put it
in his classic paper entitled “Transaction Control and Oracle7,” a multiuser data-
base must be able to handle concurrently executing transactions in a way that
“ensure(s) predictable and reproducible results.” This goal is the core issue of data
integrity, which, in turn, is the foundation of any database system.

When multiple users access the same data, there is always the possibility that one
user’s changes to a specific piece of data will be unwittingly overwritten by another
user’s changes. If this situation occurs, the accuracy of the information in the data-
base is compromised, which can render the data useless or, even worse, misleading.
At the same time, the techniques used to prevent this type of loss can dramatically
reduce the performance of an application system, as users wait for other users to
complete their work before continuing. These techniques act like a traffic signal, so
you can’t solve this type of performance problem by increasing the resources avail-
able to the database. The problem isn’t due to a lack of horsepower—it’s caused by a
red light.

Although concurrency issues are central to the success of applications, they are some
of the most difficult problems to predict because they can stem from such complex
interactive situations. The difficulties posed by concurrent access continue to
increase as the number of concurrent users increases. Even a robust debugging and
testing environment may fail to detect problems created by concurrent access, since

Basics of Concurrent Access | 187

these problems are created by large numbers of users who may not be available in a
test environment. Concurrency problems can also pop up as user access patterns
change throughout the life of an application.

If problems raised by concurrent access aren’t properly handled by a database, devel-
opers may find themselves suffering in a number of ways. They will have to create
their own customized solutions to these problems in their software, which will con-
sume valuable development time. They will frequently find themselves adding code
during the late stages of development and testing to work around the underlying
deficiencies in their database systems, which can undercut the design and perfor-
mance of the application. Worst of all, they may find themselves changing the
optimal design of their data structures to compensate for weaknesses in the capabili-
ties of the underlying database.

There is only one way to deal successfully with the issues raised by concurrent data
access. The database that provides the access must implement strategies to transpar-
ently overcome the potential problems posed by concurrent access. Fortunately,
Oracle has excellent methods for handling concurrent access.

This chapter describes the basics of concurrent data access and gives you an over-
view of the way that Oracle handles the issues raised by concurrent access. If you’ve
worked with large database systems in the past and are familiar with concurrent user
access, you might want to skip the first section of this chapter.

Basics of Concurrent Access
Before you can understand the problems posed by multiuser concurrent access to
data, you need to understand the basic concepts that are used to identify and
describe those potential concurrency issues.

Transactions
The transaction is the bedrock of data integrity in multiuser databases and the foun-
dation of all concurrency schemes. A transaction is defined as a single indivisible piece
of work that affects some data. All of the modifications made to data within a transac-
tion are uniformly applied to a database with a COMMIT statement, or the data
affected by the changes is uniformly returned to its initial state with a ROLLBACK
statement. Once a transaction is committed, the changes made by that transaction
become permanent and are made visible to other transactions and other users.

Transactions always occur over time, although most transactions occur over a very
short period of time. Since the changes made by a transaction aren’t official until the
transaction is committed, each individual transaction must be isolated from the
effects of other transactions. The mechanism used to enforce transaction isolation is
the lock.

188 | Chapter 8: Oracle Multiuser Concurrency

Locks
A database uses a system of locks to prevent transactions from interfering with each
other. A lock prevents users from modifying data. Database systems use locks to
keep one transaction from overwriting changes added by another transaction.

Figure 8-1 illustrates the potential problems that could occur if a system did not use
locks. Transaction A reads a piece of data; Transaction B reads the same piece of
data and commits a change to the data. When Transaction A commits the data, its
change unwittingly overwrites the changes made by Transaction B, resulting in a loss
of data integrity.

Two types of locks are used to avoid this type of problem. The first is called a write
lock, or an exclusive lock. An exclusive lock is applied and held while changes are
made to data in the course of a transaction and released when the transaction is
ended by either a COMMIT or a ROLLBACK statement. A write lock can be held by
only one user at a time, so only one user at a time can change that data.

Some databases also use read locks, or shared locks. A read lock can be held by any
number of users who are merely reading the data, since the same piece of data can be
shared among many readers. However, a read lock prevents a write lock from being
placed on the data, as the write lock is an exclusive lock. In Figure 8-1, if a read lock
were placed on the data when Transaction A began, Transaction B would be able to
read the same data but would be prevented from acquiring a write lock on the data
until Transaction A ended.

Figure 8-1. Transactions over time

Transaction A Transaction B
Reads data

Writes data

Commits changes

Reads data

Writes data

Commits changes

T
I

M
E

Basics of Concurrent Access | 189

Oracle uses read locks only when a SQL operation specifically requests them with
the FOR UPDATE clause in a SELECT statement. You shouldn’t use the FOR
UPDATE clause routinely because it unduly increases the probability that readers
will interfere with writers—a situation that normally never occurs with Oracle, as
you will see shortly.

Concurrency and Contention
A system of locks enforcing isolation between concurrent users of data can lead to its
own problems. As you can see from the example described above, a single transac-
tion can cause significant performance problems as the locks it places on the
database prevent other transactions from completing. The interference caused by
conflicting locks is called contention. More contention in a database slows response
times and lowers the overall throughput.

In most other databases, increased concurrent access to data results in increased con-
tention and decreased performance. Oracle’s multiversion read concurrency scheme
can greatly reduce contention, as you will see later in this chapter.

Integrity Problems
Some basic integrity problems can result if transaction isolation isn’t properly
enforced. Four of these problems are common to many databases:

Lost updates
The most common type of integrity problem occurs when two writers are both
changing the same piece of data, and one writer’s changes overwrite the other
writer’s changes. This is the problem that exclusive locks are designed to prevent.

Dirty reads
Occur when a database allows a transaction to read data that has been changed
by another transaction but hasn’t been committed yet. The changes made by the
transaction may be rolled back, so the data read may turn out to be incorrect.
Many databases allow dirty reads to avoid the contention caused by read locks.

Nonrepeatable reads
Occur as a result of changes made by another transaction. One transaction
makes a query based on a particular condition. After the data has been returned
to the first transaction, but before the first transaction is complete, another
transaction changes the data so that some of the previously retrieved data no
longer satisfies the selection condition. If the query were repeated in the same
transaction, it would return a different set of results, so any changes made on the
basis of the original results may no longer be valid. Data that was read once can
return different results if the data is read again later in the same transaction.

190 | Chapter 8: Oracle Multiuser Concurrency

Phantom reads
Also occur as a result of changes made by another transaction. One transaction
makes a query based on a particular condition. After the data has been returned
to the first transaction, but before the first transaction is complete, another
transaction inserts into the database new rows that meet the selection criteria for
the first transaction. If the first SQL statement in a transaction returned the
number of rows that initially satisfied the selection criteria, and then performed
an action on the rows that satisfied the selection criteria later in the transaction,
the number of rows affected would be different from the initial number of rows
indicated, based on the inclusion of new phantom rows.

Serialization
The goal of a complete concurrency solution is to provide the highest level of isola-
tion between the actions of different users accessing the same data. As defined by the
SQL92 standard, this highest level is called serializable. As the name implies, serializ-
able transactions appear as though they have been executed in a series of distinct,
ordered transactions. When one transaction begins, it is isolated from any changes
that occur to its data from subsequent transactions.

To the user, a serializable transaction looks as though it has the exclusive use of the
database for the duration of the transaction. Serializable transactions are predictable
and reproducible, the two cardinal virtues of data integrity.

Of course, it’s not trivial to have a database server support thousands of users while
each one thinks he is the only one. But Oracle manages to pull off this quietly dramatic
feat.

Oracle and Concurrent User Access
Oracle solves the problems created by concurrent access through a technology called
multiversion read consistency, sometimes referred to as MVRC. Multiversion read con-
sistency guarantees that a user sees a consistent view of the data she requests. If
another user changes the underlying data during the query execution, Oracle maintains
a version of the data as it existed at the time the query began. If there were transac-
tions underway but uncommitted at the time the query began, Oracle will ensure that
the query ignores the changes made by those transactions. The data returned to the
query will reflect all committed transactions at the time the query started.

This feature has two dramatic effects on the way queries impact the database. First,
Oracle doesn’t place any locks on data for read operations. This means that a read
operation will never block a write operation. Even where the database places a single
lock on a single row as part of a read operation, a single lock can still cause conten-
tion in the database, especially since most database tables tend to concentrate update
operations around a few “hot spots” of active data.

Oracle’s Isolation Levels | 191

Second, a user gets a complete “snapshot” view of the data, accurate at the point in
time that the query began. Other databases may reduce the amount of contention in
the database by locking an individual row only while it’s being read, rather than over
the complete duration of the row’s transaction. A row that’s retrieved at the end of a
result set may have been changed since the time the result set retrieval began.
Because rows that will be read later in the execution of the query weren’t locked,
they could be changed by other users, which would result in an inconsistent view of
the data.

Oracle’s Isolation Levels
Oracle, like many other databases, uses the concept of isolation levels to describe
how a transaction will interact with other transactions and how it will be isolated
from other transactions. An isolation level is essentially a locking scheme imple-
mented by the database that guarantees a certain type of transaction isolation.

An application programmer can set an isolation level at the session level (ALTER
SESSION) or transaction level (SET TRANSACTION). More restrictive isolation lev-
els will cause more potential contention, as well as delivering increased protection
against data integrity problems.

Two basic isolation levels are used frequently within Oracle: READ COMMITTED
and SERIALIZABLE. (A third level, READ ONLY, is described later in this section.)
Both of these isolation levels create serializable database operations. The difference
between the two levels is in the duration for which they enforce serializable
operations:

READ COMMITTED
Enforces serialization at the statement level. This means that every statement will
get a consistent view of the data as it existed at the start of that statement. How-
ever, since a transaction can contain more than one statement, it’s possible that
nonrepeatable reads and phantom reads can occur within the context of the
complete transaction. The READ COMMITTED isolation level is the default
isolation level for Oracle.

SERIALIZABLE
Enforces serialization at the transaction level. This means that every statement
within a transaction will get the same consistent view of the data as it existed at
the start of the transaction.

Because of their differing spans of control, these two isolation levels also react differ-
ently when they encounter a transaction that blocks their operation with an exclusive
lock on a requested row. Once the lock has been released by the blocking transac-
tion, an operation executing with the READ COMMITTED isolation level will
simply retry the operation. Since this operation is concerned only with the state of
data when the statement begins, this is a perfectly logical approach.

192 | Chapter 8: Oracle Multiuser Concurrency

On the other hand, if the blocking transaction commits changes to the data, an oper-
ation executing with a SERIALIZABLE isolation level will return an error indicating
that it cannot serialize operations. This error makes sense, because the blocking
transaction will have changed the state of the data from the beginning of the SERI-
ALIZABLE transaction, making it impossible to perform any more write operations
on the changed rows. In this situation, an application programmer will have to add
logic to his program to return to the start of the SERIALIZABLE transaction and
begin it again.

There are step-by-step examples of concurrent access later in this
chapter (in the “Concurrent Access and Performance” section) that
illustrate the different ways in which Oracle responds to this type of
problem.

One other isolation level is supported by Oracle: you can declare that a session or
transaction has an isolation level of READ ONLY. As the name implies, this level
explicitly prohibits any write operations and provides an accurate view of all the data
at the time the transaction began.

Oracle Concurrency Features
Three features are used by Oracle to implement multiversion read consistency:

Rollback segments
Rollback segments are structures in the Oracle database that store “undo” infor-
mation for transactions in case of rollback. This information restores database
rows to the state they were in before the transaction in question started. When a
transaction starts changing some data in a block, it first writes the old image of
the data to a rollback segment. The information stored in a rollback segment
provides the information necessary to roll back a transaction and supports multi-
version read consistency.

A rollback segment is different from a redo log. The redo log is used to log all
transactions to the database and recover the database in the event of a system
failure, while the rollback segment provides rollback for transactions and read
consistency.

Blocks of rollback segments are cached in the System Global Area just like
blocks of tables and indexes. If rollback segment blocks are unused for a period
of time, they may be aged out of the cache and written to disk.

System Change Number (SCN)
To preserve the integrity of the data in the database and enforce any type of seri-
alization, it is critical to keep track of the order in which actions were performed.
Oracle uses the System Change Number as an absolute determinant of the order
of transactions.

Oracle Concurrency Features | 193

The SCN is a logical timestamp that tracks the order in which transactions
begin. Oracle uses the SCN information in the redo log to reproduce transac-
tions in the original and correct order when applying redo. Oracle also uses the
SCN to determine when to clean up information in rollback segments that are
no longer needed, as you will see in the following sections.

Since Oracle Database 10g, there is a pseudocolumn on each row that
contains the SCN, ORA_ROWSCN. You can use this to quickly deter-
mine if a row has been updated since it was retrieved by comparing
the value read from this pseudocolumn at the start of a transaction
with the value read from this pseudocolumn at the end of the
transaction.

Locks in data blocks
A database must have a way of determining if a particular row is locked. Most
databases keep a list of locks in memory, which are managed by a lock manager
process. Oracle keeps locks with an area of the actual block in which the row is
stored. A data block is the smallest amount of data that can be read from disk for
an Oracle database, so whenever the row is requested, the block is read, and the
lock is available within the block. Although the lock indicators are kept within a
block, each lock affects only an individual row within the block.

In addition to the above features, which directly pertain to multiversion read
consistency, another implementation feature in Oracle provides a greater level of
concurrency in large user populations:

Nonescalating row locks
To reduce the overhead of the lock-management process, other databases will
sometimes escalate locks to a higher level of granularity within the database. For
example, if a certain percentage of rows in a table are locked, the database will
escalate the lock to a table lock, which locks all the rows in a table, including
rows that aren’t specifically used by the SQL statement in question. Although
lock escalation reduces the number of locks the lock manager process has to
handle, this escalation causes unaffected rows to be locked. With Oracle, the
lock indicator is stored within the data block itself, so there is no increase in
overhead for a lock manager when the number of locks increases. Conse-
quently, there is never any need for Oracle to escalate a lock.

A lock manager called the Distributed Lock Manager (DLM) has historically been
used with Oracle Parallel Server to track locks across multiple instances of Oracle.
This is a completely different and separate locking scheme that doesn’t affect the way
Oracle handles row locks. The DLM technology used in Oracle Parallel Server was
improved and integrated into a core product in Oracle9i, Real Application Clusters.
Real Application Clusters are described in more detail in Chapter 9.

194 | Chapter 8: Oracle Multiuser Concurrency

How Oracle Handles Locking
If you’ve read this chapter from the beginning, you should now know enough about
the concepts of concurrency and the features of Oracle to understand how the Ora-
cle database handles multiuser access. However, to make it perfectly clear how these
features interact, we’ll walk you through three scenarios: a simple write to the data-
base, a situation in which two users attempt to write to the same row in the same
table, and a read that takes place in the midst of conflicting updates.

For the purposes of these examples, we’ll use the scenario of one or two users modi-
fying the EMP table, a part of the standard sample Oracle schema that lists data
about employees via a form.

A Simple Write Operation
This example describes a simple write operation, in which one user is writing to a
row in the database. In this example, an HR clerk wants to update the name for an
employee. Assume that the HR clerk already has the employee record on-screen. The
steps from this point are as follows:

1. The client modifies the employee name on the screen. The client process sends a
SQL UPDATE statement over the network to the server process.

2. The server process obtains a System Change Number and reads the data block
containing the target row.

3. The server records row lock information in the data block.

4. The server writes the old image of the data to the redo buffers in memory, and
then writes the changes to a rollback segment and modifies the employee data,
which includes writing the SCN to the ORA_ROWSCN pseudocolumn in Ora-
cle Database 10g or newer database releases.

5. The server process writes the redo buffers to disk, and then writes the rollback
segments and the changed data to disk. The rollback segment changes are part of
the redo, since the redo log stores all changes coming from the transaction.

6. The HR clerk commits the transaction.

7. Log Writer (LGWR) writes the redo information for the entire transaction,
including the SCN that marks the time the transaction was committed, from the
redo log buffer to the current redo log file on disk. When the operating system
confirms that the write to the redo log file has successfully completed, the trans-
action is considered committed.

8. The server process sends a message to the client confirming the commit.

Oracle Database 10g Release 2 introduced the ability to have the server process
return control to the client without waiting for all the redo information to be writ-
ten. The plus side of this enhancement is that high-volume OLTP applications may
benefit from improved performance. The downside of this feature is that it opens a

How Oracle Handles Locking | 195

window of vulnerability—the database could crash after a transaction had been com-
mitted, but before the redo was written, which would make it impossible to recover
the committed transaction, so this feature should be used with caution.

A Conflicting Write Operation
The write operation previously described is a little different if there are two users,
Client A and Client B, who are trying to modify the same row of data at the same
time. The steps are as follows:

1. Client A modifies the employee name on the screen. Client A sends a SQL
UPDATE statement over the network to the server process.

2. The server process obtains an SCN for the statement and reads the data block
containing the target row.

3. The server records row lock information in the data block.

4. The server process writes the changes to the redo log buffer.

5. The server process copies the old image of the employee data about to be
changed to a rollback segment. Once the server process has completed this
work, the process modifies the employee data, which includes writing the SCN
to the ORA_ROWSCN pseudocolumn in Oracle Database 10g or newer data-
base releases.

6. Client B modifies the employee name on the screen and sends a SQL UPDATE
statement to the server.

7. The server process obtains an SCN and reads the data block containing the target
row.

8. The server process sees that there is a lock on the target row from the informa-
tion in the header of the data block, so it takes one of two actions. If the
isolation level on Client B’s transaction is READ COMMITTED, the server
process waits for the blocking transaction to complete. If the isolation level for
Client B’s transaction is SERIALIZABLE, an error is returned to the client.

9. Client A commits the transaction, the server process takes the appropriate
action, and the server sends a message to Client A confirming the commit.

10. If Client B executed the SQL statement with the READ COMMITTED isolation
level, the SQL statement then proceeds through its normal operation.

The previous example illustrates the default behavior of Oracle when it detects a
problem caused by a potential lost update. Because the SERIALIZABLE isolation
level has a more drastic effect when it detects a write conflict than the READ COM-
MITTED isolation level, many developers prefer the latter level. They can avoid
some of the potential conflicts by either checking for changes prior to issuing an
update (by comparing values in a row or using the Oracle Database 10g or later row
SCN) or using the SELECT FOR UPDATE syntax in their SQL to avoid the problem
altogether.

196 | Chapter 8: Oracle Multiuser Concurrency

A Read Operation
You can really appreciate the beauty of Oracle’s read consistency model by looking
at the more common scenario of one user reading data and one user writing to the
same row of data. In this scenario, Client A is reading a series of rows from the EMP
table, while Client B modifies a row before it is read by Client A, but after Client A
begins her transaction:

1. Client A sends a SQL SELECT statement over the network to the server process.

2. The server process obtains an SCN for the statement and begins to read the
requested data for the query. For each data block that it reads, it compares the
SCN of the SELECT statement with the SCNs for any transactions for the rele-
vant rows of the data block. If the server finds a transaction with a later SCN
than the current SELECT statement, the server process uses data in the rollback
segments to create a “consistent read” version of the data block, current as of the
time the SELECT was issued. This is what provides the multiversion read consis-
tency (MVRC) and avoids the need for Oracle to use read locks on data. If a row
has been updated since the transaction started, Oracle simply gets the earlier ver-
sion of the data for a consistent view.

3. Client B sends a SQL UPDATE statement for a row in the EMP table that has
not yet been read by Client A’s SELECT statement. The server process gets an
SCN for the statement and begins the operation.

4. Client B commits his changes. The server process completes the operation,
which includes recording information in the data block that contained the modi-
fied row that allows Oracle to determine the SCN for the update transaction.

5. The server process for Client A’s read operation comes to the newly modified
block. It sees that the data block contains changes made by a transaction that
has an SCN that is later than the SCN of the SELECT statement. The server pro-
cess looks in the data block header, which has a pointer to the rollback segment
that contains the data as it existed when Client A’s transaction started. The roll-
back segment uses the old version of the data to create a version of the block as
it existed when the SELECT statement started. Client A’s SELECT statement
reads the desired rows from this consistent version of the data block.

Figure 8-2 illustrates the process of reading with multiversion read consistency.

We explained how MVRC works with two users for the sake of clarity. But imagine a
database supporting one or more enterprise applications, with hundreds of simulta-
neous users. Oracle’s concurrency handling could avoid an enormous amount of
contention and performance degradation in a heavy use scenario—in fact, the greater
the workload, the greater the benefits of MVRC.

Concurrent Access and Performance | 197

Concurrent Access and Performance
When you read through all the steps involved in the above processes, you might
think that Oracle would be a very slow database. This is not at all true. Oracle has
consistently turned in benchmarks that make it one of the fastest databases, if not
the fastest, on the market today.

Oracle provides good performance while implementing multiversion read consis-
tency by minimizing and deferring unnecessary I/O operations. To assure the
integrity of the data in a database, the database must be able to recover in the event
of a system failure. This means that there must be a way to ensure that the data in
the database accurately reflects the state of the committed data at the time of the
crash. Oracle can do this by writing changed data to the database whenever a trans-
action commits. However, the redo log contains much less information than the
entire data block for the changed data, so it’s much “cheaper” to write to disk. Ora-
cle writes the redo information to disk as soon as a transaction commits and defers
writing the changed data blocks to the database until several sets of changed blocks
can be written together. Oracle can restore the database using the redo logs, and
these procedures cut down on time-consuming I/O operations.

Figure 8-2. Multiversion read consistency

Alpha

Carol

Darryl

Edward

Frank

Greenie

Beta

Client A
(SCN 112)

111

111

111

111

113

111

111

111

Client B
(SCN 113)

Value SCN

When Client B reads the rows, the changes made
to the "Edward" row with a later SCN are skipped.

198 | Chapter 8: Oracle Multiuser Concurrency

However, when you’re considering the performance of a database, you have to think
about more than simple I/O operations. It doesn’t really matter how fast your data-
base runs if your transaction is waiting for another transaction to release a lock. A
faster database may complete the blocking transaction faster, but your transaction is
still at a dead stop until the blocking transaction completes.

Because most databases perform a mixture of reading and writing, and because Ora-
cle is one of the only databases on the market that doesn’t use read locks, Oracle will
essentially always deliver the lowest amount of database contention. Less contention
equals greater throughput for a mixed application load.

There is also more than one type of performance. Performance for database opera-
tions is measured in milliseconds; performance for application developers is
measured in months. Because Oracle provides much less contention with its read
consistency model, developers have to spend less time adding workarounds to their
applications to handle the results of contention.

It’s not as though Oracle is the only database to give you a concurrency solution you
can use to implement applications that provide adequate data integrity. But the mul-
tiversion read consistency model makes it easy for you to get a consistent view of
data without excessive contention and without having to write workarounds in your
application. If it sounds as if we’re big fans of Oracle’s locking scheme, well—we are.

Workspaces
Oracle9i introduced a new feature that relates to concurrency, Workspace Manager.

A workspace is a way to isolate data from changes in the general database environ-
ment. Workspace Manager accomplishes this by creating workspace-specific
versions of data. When you create a workspace, you essentially create a snapshot of
the data in the workspace at a specific point in time. Further changes to that data
from outside the workspace do not affect the view of the data in the workspace, and
changes made to data within the workspace are not seen by users outside the work-
space. And changes to data within a workspace are visible only to other workspace
users.

Workspaces allow you to essentially create separate data environments for special-
ized usage. You can capture data at a certain point in time for historical analysis and
can also perform various types of “what-if” analysis, testing to see how changes
would affect the overall composition of the data without disturbing the main produc-
tion database. Both of these options would normally require you to create a duplicate
database, so workspaces can save you time and resources.

Workspaces | 199

Workspace Implementation
The key to workspaces is the support of multiple versions of the same data. To use
workspaces to version data in a table, you must first enable the table for versioning.
Workspace Manager can version-enable one or more user tables in the database. The
unit of versioning is a row. When a table is version-enabled, all rows in the table can
support multiple versions of the data. Versioned rows are stored in the same table as
the original rows. The versioning infrastructure is not visible to the users of the data-
base, and application SQL statements to select, insert, modify, and delete data
continue to work in the usual way with version-enabled tables. Workspace Manager
version-enables a table by renaming the table, adding a few columns to the table to
store versioning metadata, creating a view on the version-enabled table using the
original table name, and defining INSTEAD OF triggers on the view for SQL DML
operations.

The workspace keeps changes to the data only to minimize the size of the workspace
data and avoid data duplication.

You can have a hierarchy of workspaces, and a workspace can have more than one
parent. All workspace operations, described in the next sections, affect a workspace
and its parent workspaces. Multiple levels of workspaces can give you finer granular-
ity on the isolation of changes for workspace-enabled tables.

Oracle implements workspaces by adding metadata to the rows of a table. This meta-
data can include a timestamp as to when a change was made, which can help in anal-
ysis of workspace activity. This option works with savepoints to provide a history of
changes made to each row version created by a savepoint. The timestamp allows
users in a workspace to go back to any point in time and view the database from the
perspective of changes made in that workspace up to another point in time. You can
think of this as a type of Flashback (described in Chapter 3) for a limited set of
tables.

In addition, you can specify that a particular version of data in a workspace is valid only
for a specific time period. For instance, you could make a change to data that would be
visible to workspace users for the next 24 hours and that would then disappear.

Workspaces have their own locking mechanisms that apply only to other workspace
users. You can exclusively lock a row of data in a workspace, but this lock prevents
access only to that row for other workspace users. The underlying data could still be
accessed or changed by users who are not part of the workspace. This additional
locking makes sense, since both locks and workspaces are meant to isolate data from
changes. A workspace exists outside the boundaries of the standard database, so
workspace locks and standard database locks do not directly interact.

200 | Chapter 8: Oracle Multiuser Concurrency

Workspace Operations
There are three basic operations that apply to workspaces:

Rollback
You can roll back changes to a workspace to return the workspace to the point
in time when the workspace was created. You can also designate savepoints,
which allow you to roll back the changes in a workspace to a subsequent point
in time.

Refresh
Refreshing a workspace means bringing the data in a workspace into agreement
with the same data in the overall database. This capability could be used if you
chose to create a workspace with a snapshot of the data at the end of a day. At
midnight, you would refresh the workspace to make the workspace reflect the
data from the previous day.

Merge
A merge operation rolls changes made in a workspace into its parent workspace.

As you can imagine, both the refresh and the merge operations could end up with con-
flicts between data values in the workspace and its parent. Workspace management
keeps track of conflicts on a per-table basis; you can resolve the conflicts manually.

Workspace Enhancements
Workspace Manager is tightly integrated with the Oracle database. Oracle Database
10g Workspace Manager enhancements included the ability to export and import
version-enabled tables, to use SQL*Loader to bulk-load data into version-enabled
tables, to trigger events based on workspace operations, and to define workspaces
that are continually refreshed.

Oracle Database 11g continues the stream of enhancements to workspaces, provid-
ing support for optimizer hints and more data maintenance operations on
workspace-enabled tables.

201

Chapter 9 CHAPTER 9

Oracle and Transaction Processing9

The value of information systems is clear from the ever-increasing number of transac-
tions processed by the world’s databases. Transactions form the foundation of
business computing systems. In fact, transaction processing (TP) was the impetus for
business computing as we know it today. The batch-oriented automation of core
business processes like accounting and payroll drove the progress in mainframe com-
puting through the 1970s and 1980s. Along the way, TP began the shift from batch
to users interacting directly with systems, and online transaction processing (OLTP)
was born. In the 1980s the computing infrastructure shifted from large centralized
mainframes with dumb terminals to decentralized client/server computing with
graphical user interfaces (GUIs) running on PCs and accessing databases on other
machines over a network.

The client/server revolution provided a much better user interface and reduced the
cost of hardware and software, but it also introduced additional complexity in sys-
tems development, management, and deployment. After a decade of use, system
administrators were being slowly overwhelmed by the task of managing thousands of
client machines and dozens of servers, so the latter half of the 1990s saw a return to
centralization, including the grid (introduced in Chapter 1). Throughout all of these
shifts, Oracle databases have continued to use their inherent architecture and con-
stant enhancements to service the ever-growing load of transactions.

This chapter looks at all of the features of the Oracle database that contribute to its
ability to handle large transaction loads. Although many of the specific features cov-
ered in this chapter are touched upon in other chapters of this book, this chapter
examines all of these features in light of their use in large OLTP systems.

OLTP Basics
Before we discuss how Oracle specifically handles OLTP, we’ll start by presenting a
common definition of online transaction processing.

202 | Chapter 9: Oracle and Transaction Processing

What Is a Transaction?
The concept of a transaction and the relevant Oracle mechanics for dealing with
transactions were discussed in Chapter 8. To recap that discussion, a transaction is a
logical unit of work that must succeed or fail in its entirety. Each transaction typi-
cally involves one or more Data Manipulation Language (DML) statements such as
INSERT, UPDATE, or DELETE, and ends with either a COMMIT to make the
changes permanent or a ROLLBACK to undo the changes.

The industry bible for OLTP, Transaction Processing: Concepts and Techniques, by
Jim Gray and Andreas Reuter (Morgan Kaufmann; see Appendix B), introduced the
notion of the ACID properties of a transaction. A transaction must be the following:

Atomic
The entire transaction succeeds or fails as a complete unit.

Consistent
A completed transaction leaves the affected data in a consistent or correct state.

Isolated
Each transaction executes in isolation and doesn’t affect the states of others.

Durable
The changes resulting from committed transactions are persistent.

If transactions execute serially—one after the other—their use of ACID properties
can be relatively easily guaranteed. Each transaction starts with the consistent state
of the previous transaction and, in turn, leaves a consistent state for the next transac-
tion. Concurrent usage introduces the need for sophisticated locking and other
coordination mechanisms to preserve the ACID properties of concurrent transac-
tions while delivering throughput and performance. Chapter 8 covered Oracle’s
handling of locking and concurrency in depth.

What Does OLTP Mean?
Online transaction processing can be defined in different ways: as a type of comput-
ing with certain characteristics, or as a type of computing in contrast to more
traditional batch processing.

General characteristics

Most OLTP systems share some of the following general characteristics:

High transaction volumes and large user populations
OLTP systems are the key operational systems for many companies, so these sys-
tems typically support the highest volume and largest communities of any
systems in the organization.

OLTP Basics | 203

Well-defined performance requirements
OLTP systems are central to core business operations, so users must be able to
depend on a consistent response time. OLTP systems often involve Service Level
Agreements that state the expected response times.

High availability
These systems are typically deemed mission-critical with significant costs result-
ing from downtime.

Scalability
The ability to increase transaction volumes without significant degradation in
performance allows OLTP systems to handle fluctuations in business activity.

In short, OLTP systems must be able to deliver consistent performance at any time,
regardless of system load. Anything that affects these core systems can produce a
ripple effect throughout your entire organization, affecting both revenue and
profitability.

Online versus batch

Online transaction processing implies direct and conversational interaction between
the transaction processing system and its users. Users enter and query data using
forms that interact with the backend database. Editing and validation of data occur
at the time the transactions are submitted by users.

Batch processing occurs without user interaction. Batches of transactions are fed
from source files to the operational system. Errors are typically reported in exception
files or logs and are reviewed by users or operators later on. Virtually all OLTP sys-
tems have a batch component: jobs that can execute in off-peak hours for reporting,
payroll runs, posting of accounting entries, and so on.

Many large companies have batch-oriented mainframe systems that are so thor-
oughly embedded in the corporate infrastructure that they cannot be replaced or
removed. A common practice is to “frontend” these legacy systems with OLTP sys-
tems that provide more modern interfaces. Users interact with the OLTP system to
enter transactions. Batch files are extracted from the OLTP system and fed into the
downstream legacy applications.

Once the batch processing is done, extracts are produced from the batch systems and
are used to refresh the OLTP systems. This extraction process provides the users
with a more sophisticated interface with online validation and editing, but it pre-
serves the flow of data through the entrenched batch systems. While this process
seems costly, it’s typically more attractive than the major surgery that would replace
older systems. To compound the difficulty, in some cases the documentation of these
older systems is incomplete and the employees who understand the inner workings
have retired or moved on.

204 | Chapter 9: Oracle and Transaction Processing

The financial services industry is a leader in information technology for transaction
processing, so this notion of feeding legacy downstream applications is very common
in banks and insurance companies. For example, users often enter insurance claims
into frontend online systems. Once all the data has been entered, if the claim has
been approved, it’s extracted and fed into legacy systems for further processing and
payment.

Oracle features such as transportable tablespaces and Streams, discussed in
Chapter 13 of this book, are aimed in part at providing the functionality required by
distributed OLTP systems in a more timely fashion than traditional batch jobs.

OLTP Versus Business Intelligence
Mixed workloads—OLTP and reporting—are the source of many performance chal-
lenges and the topic of intense debate. The data warehousing industry had its genesis
in the realization that OLTP systems could not realistically provide the needed transac-
tion throughput while supporting the enormous amount of historical data and ad hoc
query workload that business analysts needed for things like multiyear trend analysis.

The issue isn’t simply one of adequate machine horsepower; rather, it’s the way data
is modeled, stored, and accessed, which is typically quite different. In OLTP, the
design centers on analyzing and automating business processes to provide consistent
performance for a well-known set of transactions and users. The workload revolves
around large numbers of short and well-defined transactions—with a fairly signifi-
cant percentage of write transactions.

Business intelligence typically operates on larger data stores that frequently are
assembled from multiple data sources and contain long histories. The schema design
for data warehouses is usually very different from the fully normalized design best
suited for OLTP data stores. And data warehouses can support ad hoc queries that,
because of their complexity and the amount of data accessed, can place significant
loads on a system with only a handful of requests.

Reporting and query functions are part of an OLTP system, but the scope and fre-
quency are typically more controlled than in a data warehouse environment. For
example, a banking OLTP system will include queries for customer status and
account balances, but not multiyear transaction patterns.

The OLTP system typically provides forms that allow well-targeted queries that are
executed efficiently and don’t consume undue resources. However, hard and fast
rules—for example, that OLTP systems don’t include extensive query facilities—
don’t necessarily hold true. The I/O performed by most OLTP systems tends to be
approximately 70–80 percent read and 20–30 percent write. Most transactions
involve the querying of data, such as product codes, customer names, account bal-
ances, inventory levels, and so on. Users submitting tuned queries for specific busi-
ness functions are a key part of OLTP. Ad hoc queries across broad data sets are not.

Oracle’s OLTP Heritage | 205

Business intelligence data warehousing systems and OLTP systems could access
much of the same data, but these types of systems also typically have different
requirements in terms of CPU, memory, and data layout, which makes supporting a
mixed workload less than optimal for both types of processing. Real Application
Clusters, with dynamic service provisioning since Oracle Database 10g, makes it pos-
sible to allocate individual nodes for individual workloads. It also makes it more
feasible to deploy these mixed workloads to a single database (albeit with multiple
database instances).

Oracle’s OLTP Heritage
Oracle has enjoyed tremendous growth as the database of choice for OLTP in the
midrange-computing environment. Oracle6 introduced nonescalating row-level lock-
ing and read consistency (two of the most important of Oracle’s core OLTP
features), but Oracle7 was really the enabler for Oracle’s growth in OLTP. Oracle7
introduced many key features, including the following:

• Multi-Threaded Server (MTS), now known as shared server

• Shared SQL

• Stored procedures and triggers

• XA support

• Distributed transactions and two-phase commits

• Data replication

• Oracle Parallel Server (OPS)*

Oracle8 enhanced existing functionality and introduced additional OLTP-related fea-
tures including the following:

• Connection pooling

• Connection multiplexing

• Data partitioning

• Advanced Queuing (AQ)

• Index organized tables

• Internalization of the Distributed Lock Manager (DLM) for Oracle Parallel
Server

• Internalization of the triggers for replicated tables and parallel propagation of
replicated transactions

* OPS was actually available for DEC VMS in 1989 and for NCR Unix with the last production release of
Oracle6 (version 6.0.36), but it became widely available, more stable, and more popular in Oracle7.

206 | Chapter 9: Oracle and Transaction Processing

Oracle8i provided the following additional enhancements and technologies for
OLTP:

• Support for Java internally in the database kernel

• Support for distributed component technologies: CORBA V2.0 and Enterprise
JavaBeans (EJB) v1.0

• Publish/subscribe messaging based on Advanced Queuing

• Online index rebuild and reorganization

• Database Resource Manager (DRM)

• Use of a standby database for queries

• Internalization of the replication packages used to apply transactions at the
remote sites

Oracle9i continued this trend, with the introduction of Real Application Clusters,
which extended the benefits of Oracle Parallel Server to OLTP applications. Since
Oracle Database 10g, the capabilities of Real Application Clusters support deploy-
ment to a new computing model, grid computing. But many of the capabilities that
enable OLTP with Oracle have been core to the database product for many years.

The remainder of this chapter examines many of these features in more depth.

Architectures for OLTP
Although all OLTP systems are oriented toward the same goals, there are several dif-
ferent underlying system architectures that you can use for the deployment of OLTP,
including the traditional two-tier model, a three-tier model, and a centralized model
that encompasses the use of the Web and the grid.

Traditional Two-Tier Client/Server
The late 1980s saw the rise of two-tier client/server applications. In this configura-
tion, PCs acted as clients accessing a separate database server over a network. The
client ran both the GUI and the application logic, giving rise to the term fat clients.
The database server processed SQL statements and returned the requested results
back to the clients. While database servers were relatively simple to develop using
visual tools, client/server systems were difficult to deploy and maintain—they
required fairly high-bandwidth networks and the installation and regular upgrading
of specific client software on every user’s PC.

Figure 9-1 illustrates the two-tier architecture.

Architectures for OLTP | 207

Stored Procedures
Oracle7 introduced stored procedures written in PL/SQL, Oracle’s proprietary lan-
guage for writing application logic. These procedures are stored in the database and
executed by clients issuing remote procedure calls (RPCs) as opposed to executing
SQL statements. Instead of issuing multiple SQL calls, occasionally with intermedi-
ate logic to accomplish a task, the client issues one procedure call, passing in the
required parameters. The database executes all the required SQL and logic using the
parameters it receives.

Stored procedures can also shield the client logic from internal changes to the data
structures or program logic. As long as the parameters the client passed in and
received back don’t change, no changes are required in the client software. Stored
procedures move a portion of the application logic from the client to the database
server. By doing so, stored procedures can reduce the network traffic considerably.
This capability increases the scalability of two-tier systems. Figure 9-2 illustrates a
two-tier system with stored procedures.

Figure 9-1. Two-tier client/server architecture

Figure 9-2. Two-tier system with stored procedures

SQL

Data

Client
-GUI
-Application logic

Database
-Data
-SQL

Oracle
Instance

Oracle
Database

Procedure Calls

Return Parameters

Client
-GUI
-Application logic

Database
-Data
-SQL
-Program logic

Oracle
Instance

Oracle
Database

208 | Chapter 9: Oracle and Transaction Processing

Three-Tier Systems
The OLTP systems with the largest user populations and transaction throughput are
typically deployed using a three-tier architecture. In the past, the three-tier architec-
ture involved a transaction processing monitor, but now more frequently uses an
application server. Clients access a transaction processing (TP) monitor or applica-
tion server in the middle tier that, in turn, accesses a database server on the backend.
The notion of a TP monitor dates back to the original mainframe OLTP systems. Of
course, in the mainframe environment all logic ran on one machine. In an open sys-
tem environment, application servers typically run on a separate machine (or
machines), adding a middle tier between clients and the database server.

There are various classes of application servers:

• Older, proprietary servers such as Tuxedo from BEA Systems on Unix and
Windows, or CICS from IBM on mainframes

• Industry-standard application servers based on Java 2 Enterprise Edition (J2EE)

• The Microsoft .NET application server environment as part of the Windows
operating systems for servers, for example, Windows 2000 or Windows 2003

Application servers provide an environment for running services that clients call. The
clients don’t interact directly with the database server. Some examples of calling ser-
vices provided by a TP monitor on a remote machine seem similar in many ways to
the stored procedure architecture described in the previous section, which is why
stored procedure-based systems are sometimes referred to as “TP-Lite.”

Application servers provide additional valuable services, such as:

Funneling
Like Oracle’s shared servers, application servers leverage a pool of shared ser-
vices across a larger user population. Instead of each user connecting directly to
the database, the client calls a service running under the TP monitor or applica-
tion server’s control. The application servers invoke one of its services; the
service interacts with the database.

Connection pooling
The application server maintains a pool of shared, persistent database connec-
tions used to interact with the database on behalf of clients in handling their
requests. This technique avoids the overhead of individual sessions for each
client.

Load-balancing
Client requests are balanced across the multiple shared servers executing on one
or more physical machines. The application servers can direct client service calls
to the least-loaded server and can spawn additional shared servers as needed.

Architectures for OLTP | 209

Fault-tolerance
The application server acts as a transaction manager; the monitor performs the
commit or rollback of the transaction.* The underlying database becomes a
resource manager, but doesn’t control the transaction. If the database server fails
while executing some transaction, the application server can resubmit the trans-
action to a surviving database server, as control of the transaction lies with the
application server.

This type of transaction resiliency is a hallmark of the older TP monitors such as
Tuxedo, and the newer application servers and standards offer similar features.

Transaction routing
The logic in the middle tier can direct transactions to specific database servers,
increasing scalability.

Heterogeneous transactions
Application servers can manage transactions across multiple heterogeneous data-
base servers—for example, a transaction that updates data in Oracle and DB2.

While developing three-tier OLTP systems is complex and requires specialized skills,
the benefits are substantial. Systems that use application servers provide higher scal-
ability, availability, and flexibility than the simpler two-tier systems. Determining
which architecture is appropriate for an OLTP system requires (among other things)
careful evaluation and consideration of costs, available skills, workload profiles, scal-
ability requirements, and availability requirements.

Figure 9-3 illustrates a three-tier system using an application server.

Application Servers and Web Servers
The middle tier of web-based systems is usually an application server and/or a web
server. These servers provide similar services to the application server previously
described, but are more web-centric, dealing with HTTP, HTML, CGI, and Java.

J2EE and .NET application servers have evolved a great deal in the last decade and
are the clear inheritors of the TP monitor legacy for today’s N-tier systems. Different
companies have different standards and preferences—the proprietary nature of .NET
leads some firms to J2EE, while others prefer the tight integration of Microsoft’s
offerings. A detailed discussion of the relative merits of J2EE and .NET, and applica-
tion server technology in general, is beyond the scope of this book. Suffice to say that
application servers play an extremely important role in today’s systems environ-
ment, and database management personnel need to understand N-tier systems
architecture.

* TP monitors usually control transactions using the X/Open Distributed Transaction Processing standard
published by the X/Open standards body. A database that supports the XA interface can function as a
resource manager under control of a TP monitor, which acts as a transaction manager.

210 | Chapter 9: Oracle and Transaction Processing

Figure 9-4 depicts an N-tier system with a client, web server, application server, and
DBMS server.

The Grid
Oracle Database 10g introduced focus on another architecture variation, grid
computing. The actual topology of the grid is not relevant to the discussion in this
chapter, because the point of the grid is to provide an extremely simple user inter-
face that transparently connects to a highly flexible source of computing power.

Figure 9-3. Three-tier architecture

Figure 9-4. An N-tier system

Oracle
Database

Service

Client
-GUI

Application Server
-Services logic
-Funneling
-Load-balancing
-Transaction control

Database
-Data
-SQL

Service Calls

Application
Server

Service

Service

Service

Service

Oracle
Instance

Web Server

Browser

HTTP(s)

Application
Server

Oracle Database
Server

JDBCHTTP(s)

J2EE Application
Server Proxy

J2EE Application
Server

Oracle Features for OLTP | 211

In this way, the grid gives IT departments the ability to achieve the benefits of more
complex architectures while not imposing undue complexity on users, and OLTP
applications are deployed using grid computing resources.

Oracle Features for OLTP
Oracle has many features that contribute to OLTP performance, reliability, scalabil-
ity, and availability. This section presents the basic attributes of many of these
features. This section is by no means exhaustive; it’s only intended to be an introduc-
tion. Please see the relevant Oracle documentation and third-party books for more
information.

General Concurrency and Performance
As discussed in Chapter 8, Oracle has excellent support for concurrency and perfor-
mance in OLTP systems. Some of the key features relevant to OLTP are as follows:

Nonescalating row-level locking
Oracle locks only the rows a transaction works on and never escalates these
locks to page-level or table-level locks. In some databases, which escalate row
locks to page locks when enough rows have been locked on a page, contention
can result from false lock contention when users want to work on unlocked rows
but contend for locks that have escalated to higher granularity levels.

Multiversion read consistency
Oracle provides statement-level and transaction-level data consistency without
requiring read locks. A query is guaranteed to see only the data that was
committed at the time the query started. The changes made by transactions that
were in-flight but uncommitted at the time the query started won’t be visible.
Transactions that began after the query started and were committed before the
query finishes also won’t be seen by the query. Oracle uses rollback segments to
reproduce data as it existed at the time the query started. This capability avoids
the unpleasant choice between allowing queries to see uncommitted data
(known as dirty reads) or having readers block writers (and vice versa). It also
provides a consistent snapshot view of data at a single point in time.

Shared SQL
The parsing of a SQL statement is fairly CPU-intensive. Oracle caches parsed
and optimized SQL statements in the shared SQL area within the shared pool. If
another user executes a SQL statement that is cached, the parse and optimize
overhead is avoided. The statements must be identical to be reused; no extra
spaces, line feeds, or differences in capitalization are allowed. OLTP systems
involve a large number of users executing the same application code. These sys-
tems provide an ideal opportunity for reusing shared SQL statements.

212 | Chapter 9: Oracle and Transaction Processing

Stored outlines
Oracle8i added support of execution-plan stability, sometimes referred to as
bound plans, with stored outlines. The route a SQL statement takes during exe-
cution is critical for high performance. Once application developers and DBAs
have tuned a SQL statement for maximum efficiency, they can force the Oracle
optimizer to use the same execution plan regardless of environmental changes.
This provides critical stability and predictability in the face of software upgrades,
schema changes, data-volume changes, and so on. Oracle9i added the capability
for administrators to edit stored outlines.

Since Oracle Database 10g, you can select better execution plans for the
optimizer to use in conjunction with poorly written SQL to improve OLTP per-
formance without having to rewrite the SQL. The SQL Tuning Advisor performs
these advanced optimizations on SQL statements, and can then create an
improved SQL Profile for the statement. This profile is used instead of the origi-
nal optimization plan at runtime.

Scalability
Both the shared server and the Database Resource Manager help Oracle support
larger or mixed user populations.

Multi-Threaded Server/shared server

Oracle7 introduced the Multi-Threaded Server (MTS, renamed the shared server in
Oracle9i) (described in Chapter 2) to allow Oracle to support larger user popula-
tions. While shared server and MTS reduced the number of server processes, each
client still used its own physical network connection. The resources for network con-
nections aren’t unlimited, so Oracle8 introduced two solutions for increasing the
capabilities of the actual network socket layer at the operating-system level:

Oracle Net connection pooling
Allows the client population to share a pool of shared physical network connec-
tions. Idle clients transparently “time out,” and their network connections are
returned to the pool to be used by active clients. Each idle client maintains a vir-
tual connection with Oracle and will get another physical connection when
activity resumes. With the Oracle security model, authentication is separate
from a specific connection, so a single pooled connection can represent different
users at different times. Connection pooling is suitable for applications with cli-
ents that connect but aren’t highly active (for example, email systems).

Oracle Net Connection Manager
Reduces the number of network connections used on the database server.
Clients connect to a middle-tier machine running the Oracle Net Connection

Oracle Features for OLTP | 213

Manager (CMAN). The Connection Manager multiplexes the traffic for multiple
clients into one network connection per Oracle Net dispatcher on the database
server. Unlike connection pooling, there is no notion of “time-out” for a client’s
virtual network connection. The Oracle network topology can include multiple
machines running the Connection Manager to provide additional scalability and
fault-tolerance.

In terms of scalability, you can think of connection pooling as the middleweight
solution and multiplexing via Connection Manager as the heavyweight solution.
Figure 9-5 illustrates these two network-scaling technologies.

Connection Manager has become more flexible in Oracle Database 10g, with the
added ability to dynamically alter configuration parameters without shutting down
Connection Manager and improved access rules to filter CMAN traffic.

Figure 9-5. Network scaling in Oracle Net

Shared Server

CONNECTION POOLING

Shared Server

Concentrators

Multiplexing

CONNECTION MULTIPLEXING

214 | Chapter 9: Oracle and Transaction Processing

Database Resource Manager

Oracle8i introduced the Database Resource Manager (DRM) to simplify and auto-
mate the management of mixed workloads in which different users access the same
database for different purposes. You can define different consumer groups to con-
tain different groups of users. The DRM allocates CPU and parallelism resources to
consumer groups based on resource plans. A resource plan defines limits for the
amount of a particular computer resource a group of users can use. This allows the

Bind Variables and Shared SQL
As we’ve mentioned, Oracle’s shared SQL is a key feature for building high-performance
applications. In an OLTP application, similar SQL statements may be used repeatedly,
but each SQL statement submitted will have different selection criteria contained in the
WHERE clause to identify the different sets of rows on which to operate. Oracle can
share SQL statements, but the statements must be absolutely identical.

To take advantage of this feature for statements that are identical except for specific
values in a WHERE clause, you can use bind variables in your SQL statements. The
values substituted for the bind variables in the SQL statement may be different, but the
statement itself is the same.

Consider an example application for granting raises to employees. The application
submits the following SQL:

UPDATE emp SET salary = salary * (1 + 0.1)
 WHERE empno = 123;
UPDATE emp SET salary = salary * (1 + 0.15)
 WHERE empno = 456;

These statements are clearly different; they update different employees identified by
different employee numbers, and the employees receive different salary increases. To
obtain the benefits of shared SQL, you can write the application to use bind variables
for the percentage salary increase and the employee numbers, such as:

UPDATE emp SET salary = salary * (1 + :v_incr)
 WHERE empno = :v_empno;
UPDATE emp SET salary = salary * (1 + :v_incr)
 WHERE empno = :v_empno;

These statements are recognized as identical and would therefore be shared. The appli-
cation would submit different values for the two variables :v_incr and :v_empno, a
percentage increase of 0.1 for employee 123 and 0.15 for employee 456. Oracle substi-
tutes these actual values for the variables in the SQL. The substitution occurs during
the phase of processing known as the bind phase, which follows the parse phase and
optimize phase. For more details, see the relevant Oracle guide for your development
language.

Oracle Database 10g and more recent versions include tuning tools that can easily spot
this type of potential application optimization.

Oracle Features for OLTP | 215

DBA to ensure that certain types of users receive sufficient machine resources to
meet performance requirements.

For example, you can allocate 80 percent of the CPU resources to order-entry users,
with the remaining 20 percent allocated to users asking for reports. This allocation
prevents reporting users from dominating the machine while order-entry users are
working. If the order-entry users aren’t using all the allocated resources, the reporting
users can use more than their allotted percentage. If the order-entry workload
increases, the reporting users will be cut back to respect their 20 percent allocation. In
other words, the order-entry users will get up to 80 percent of CPU time, as needed,
while the users asking for reports will get at least 20 percent of the CPU time, and
more depending on how much the order-entry group is using. With the DRM, you can
dynamically alter the details of the plan without shutting down the instance.

Oracle9i added a number of significant improvements to the Database Resource
Manager. The DRM now allows a DBA to specify the number of active sessions avail-
able to a consumer group. Any additional connection requests for the consumer
group are queued. By limiting the number of active connections, you can start to
avoid the situation where a request comes in that pushes the resource requirements
for a group over the limit and affects all the other users in that group.

Oracle9i also added to the Database Resource Manager the ability to proactively esti-
mate the amount of CPU that an operation will require. If an operation looks as if it
will exceed the maximum CPU time specified for a resource group, the operation will
not be executed, which can prevent inappropriately large operations from even
starting.

Finally, since Oracle9i, the DRM can also automatically switch a consumer group to
another consumer group if that group is active for too long. This feature could be
used to automatically switch a consumer group oriented toward short OLTP opera-
tions to another group that would be more appropriate for batch operations.

Since Oracle Database 10g, you can define a consumer group by the service name,
application, host machine, or operating system username of a user.

Real Application Clusters
Arguably, the biggest advance in Oracle9i was a feature called Real Application Clus-
ters. Real Application Clusters (RAC) was a new version of technology replacing
Oracle Parallel Server (OPS).

In the first edition of this book, we described OPS as a feature that could be used for
improving performance and scalability for certain data warehouse-style applications—
applications in which data could be partitioned in logical ways and applications that
primarily supported read activity. The reason why use of OPS was mostly limited to
data warehousing implementations was the phenomenon known as pinging.

216 | Chapter 9: Oracle and Transaction Processing

In the world of both OPS and RAC, multiple machines access the same database files
on shared disk (either physically attached or appearing as physically attached
through software), as shown in Figure 9-6.

This architecture allows you to add more machines to a cluster of machines, which
in turn adds more overall horsepower to the system. But there was a problem with
the implementation of this architecture for OPS, stemming from the fact that a page
can contain more than a single row. If one machine in a cluster wanted to modify a
row in a page that was already being modified by another machine, that page had to
be flushed to the database file on the shared disk—a scenario that was termed a ping.
This chain of events caused extra disk I/O, which in turn decreased the overall per-
formance of the solution.

The traditional way around this problem was simply to avoid it—to use OPS only
when a database would not cause pings with a lot of write operations, or to segre-
gate writes so that they would not require data in use on another node. This
limitation required you to carefully consider the type of application to which you
would deploy OPS and sometimes forced you to actually modify the design of your
application to work around OPS’s limitations.

With Real Application Clusters, the problem caused by pings was eliminated. RAC
fully supports the technology known as Cache Fusion. Cache Fusion makes all the
data in every cache on every machine in a Real Application Cluster available to every
other machine in the cluster. If one machine needs a block that is either being used
by another machine or simply residing in the cache of another machine, the block is
directly shipped to the requesting machine, usually over a very high-speed
interconnect.

Figure 9-6. RAC architecture

Disk 1 Disk 2

Node 1 Node 2 Node 3 Node 4

High Availability | 217

Cache Fusion means that you do not have to work around the problems of pinging.
With Real Application Clusters you will be able to see significant scalability improve-
ments for most all applications, without any modifications. With that said, for OLTP
applications deployed to RAC (where there are frequent modifications to indexes
within a small set of leaf blocks), reverse key indexes might be used to distribute
inserts across leaf keys in the index and eliminate possible performance issues for
this special situation (see Chapter 4 for an explanation of reverse key indexes).

Real Application Clusters also deliver all the availability advantages that were a part
of OPS. Because all the machines in a Real Application Cluster share the same disk,
the failure of a single machine does not mean that the database as a whole has failed.
The users connected to the failed machine have to be failed over to another machine
in the cluster, but the database server itself will continue to operate.

As of Oracle Database 10g, the model implemented with RAC has been extended
beyond clusters to grid computing. Oracle now offers all the components you need
to use to implement clusters on several operating system platforms as part of the
Oracle software stack, including a volume manager and clusterware. In Oracle 10g
Release 2, Oracle made it possible to monitor the different nodes in a cluster and to
issue advisories to ensure better load balancing across the nodes.

High Availability
From an operational perspective, OLTP systems represent a company’s electronic
central nervous system, so the databases that support these systems must be highly
available. Oracle has a number of features that contribute to high availability:

Standby database
Oracle can provide database redundancy by maintaining a copy of the primary
database on another machine, usually at another site. Redo logs from the pri-
mary server are shipped to the standby server and applied there to duplicate the
production activity. Oracle8i introduced the automated shipping of redo logs to
the standby site and the ability to open the standby database for read-only access
for reporting.

Oracle9i Release 2 introduced the concept of logical standby. With a logical
standby database the changes are propagated with SQL statements, rather than
redo logs, which allow the logical standby database to be used for other data-
base operations.

Transparent Application Failover (TAF)
TAF is a programming interface that automatically connects a user session to
another Oracle instance should the primary instance fail. Any queries that were
in process are resumed from the point of the last row fetched for the result set.

218 | Chapter 9: Oracle and Transaction Processing

Oracle Streams/Advanced Queuing (AQ)
AQ in Oracle Streams provides a method for asynchronous, or deferred, intersys-
tem communication, allowing systems to operate more independently. Avoiding
direct system dependencies can help to avoid “cascading” failures, allowing inter-
connected systems to continue to operate even if one system fails. For example,
Streams can enable change data capture among Oracle databases and can be
used with non-Oracle databases by leveraging gateways. These capabilities are
described in more detail in the following section and in Chapter 13.

Oracle Streams Replication
You can use Oracle’s built-in replication functionality to provide data redundancy.
Changes made by transactions are replicated synchronously or asynchronously to
other databases. If the primary database fails, the data is available from the other
databases. As of Oracle9i Release 2, log-based replication is included as part of
Streams. Replication is described in more detail in Chapter 13.

Real Application Clusters
Real Application Clusters can increase the scalability of the Oracle database over
multiple nodes in a cluster. But by supporting multiple instances with full access
to the same database, RAC also provides the highest levels of availability for pro-
tection from the failure of a node in a clustered environment. If one node fails,
the surviving nodes provide continued access to the database. Grid computing
deployment further extends availability capabilities.

Oracle Database 11g provides a number of high availability enhancements, includ-
ing the ability to easily capture diagnostic information about database failures. For a
more detailed discussion of high availability, see Chapter 11.

Oracle Streams and Advanced Queuing
Messaging technology has existed for quite some time and is common in OLTP
applications. Typical messaging technologies provide a reliable transport layer for
shipping messages from one machine to another over a network. Oracle8 introduced
Advanced Queuing (AQ) as an integrated database service. Oracle9i Release 2 com-
bined AQ with log-based replication in the creation of Oracle Streams.

Oracle Streams AQ provides the benefits of simple messaging products but adds the
value of database-resident queues. The information in message queues represents
critical business events and should be stored in a reliable, scalable, secure, and recov-
erable place. Placing the queues in the database extends the core benefits of a database
to the queues themselves.

The data that flows through queues represents the ebb and flow of business activity.
Analyzing the types and volumes of message traffic can help to identify how differ-
ent business functions are operating and interacting and this, in turn, can provide
valuable insights into the operation of your business. AQ supports the notion of

Oracle Streams and Advanced Queuing | 219

message warehousing, in which the content and details of the queues can be queried
and analyzed because they’re already in the database. Oracle can dequeue messages
but can leave historical data in the queues for subsequent analysis.

Applications can enqueue and dequeue messages as part of a transaction or as a sep-
arate event that occurs as soon as the specific enqueue or dequeue statement is
issued. Queue actions included in the scope of a transaction are committed or rolled
back with that transaction. Should a failure occur, the queue activities are recovered
along with the rest of the database activity.

Oracle can propagate messages from one queue to another by providing a routing
engine for message traffic. Figure 9-7 illustrates the use of queuing and propagation.

Oracle Database 10g and more recent versions make it easier to implement Streams
programmatically, by allowing you to enqueue and dequeue batches of messages and
by reducing the amount of coding required to interact with queues.

Streams for System Interfaces
Implementing OLTP systems invariably involves interfaces with other systems in the
enterprise or in other companies. The effort to design, create, and manage these inter-
faces is substantial and can easily account for 40 percent to 60 percent of the cost of
large-scale ERP implementations. Furthermore, adding other systems to the mix or
changing existing systems entails reworking the interfaces, resulting in an increasing
and ongoing burden.

Oracle Streams can help companies solve the integration problem when implement-
ing a “hub-and-spoke” architecture using a combination of messaging, routing, and
transformation technologies. Traditionally, you would develop a specific interface
between two systems. As you added a third system to the mix, you would have to

Figure 9-7. Oracle Streams/Advanced Queuing

Oracle

Advanced
Queues

Oracle

Advanced
Queues

Application
M
A
C
H
I
N
E

B
O
U
N
D
A
R
Y

Propagate

Propagate Application

Oracle

Advanced
Queues

Application

Application

220 | Chapter 9: Oracle and Transaction Processing

create more specific interfaces between each of the systems. The more systems you
attempt to integrate, the more custom interfaces you would be responsible for devel-
oping and the greater the development and maintenance burden would be.

Using these components, individual systems can connect to a hub via the spokes,
thus avoiding direct system-to-system interfaces. The spokes send and receive mes-
sages, while the hub provides routing and transformation services. This reduces the
number of interfaces required to connect a set of systems. You don’t need a specific
interface for every specific system pair. Adding systems to existing systems doesn’t
require development of many new interfaces. You connect the new system to the hub
and leverage the routing and transformation services. Figure 9-8 contrasts the cus-
tom approach with the hub-and-spoke approach.

Oracle and Publish-Subscribe Technology
Oracle8i enhanced Advanced Queuing to include publish-subscribe functionality.
Applications can subscribe to a message queue by specifying the attributes of mes-
sages they’re interested in receiving. When another application publishes a message
by placing it in a queue, Oracle evaluates the contents of the message to determine
which of the subscribing applications are interested and notifies those applications.
For example, a shipping application can subscribe to a queue used for orders and
specify that only messages for orders with a status of “Ready to Ship” are of interest.
As messages representing these orders flow through the queue, the shipping applica-
tion will receive only the desired messages. This publish-subscribe functionality,
coupled with message propagation for routing, provides a very powerful messaging
backbone for information flow between systems.

Figure 9-8. Custom interfaces versus hub-and-spoke approach

• Each interface is specific
• Expensive to develop and maintain
• Adding systems is increasingly difficult

• Queuing provides transport analog spokes
• Hub provides message transformation
• Adding systems is simpler

System

System

System

System

N-Touchpoints Hub-and-Spoke

System

System

System

System

HUB

Object Technologies and Distributed Components | 221

Object Technologies and Distributed Components
In theory, the greater the amount of information, the more intelligence that can be
extracted from it. Integrating information from separate systems can be an enor-
mous task, especially because the complexity of integration increases geometrically
as more systems are added to the mix.

While messaging technologies can assist with interfacing different systems, online
interaction is often needed as well. For example, if the Human Resources system
maintains information about the company’s employees (such as the department in
which they work and their role), ideally the Purchasing system could access the data
in the HR system online at the time purchases are being made. At this point, the Pur-
chasing system could determine the spending limits of the purchaser and to what
department the accounting should be tied. In practice, these online interfaces are dif-
ficult to build because they require the systems to agree, and remain in agreement,
about how to communicate. Each system has proprietary application programming
interfaces (APIs) that allow other systems to communicate with them. These spe-
cific, and often conflicting, APIs limit the reuse of the functionality within each
system.

Object technologies offer one solution: systems communicate by invoking methods
on objects instead of by calling specific APIs. For example, if you want to check the
department of a user, you make a standard object call to the employee object man-
aged by the HR system.

Oracle8i and later versions support a number of object technologies, including Java
for use as an object-oriented programming language. Oracle’s object-oriented
support is described in more detail in Chapter 14. More recently, the focus on
developing applications and code for reuse now includes the concept of a Service-
Oriented Architecture (SOA) and web services, described in Chapter 15.

222

Chapter 10CHAPTER 10

Oracle Data Warehousing and Business
Intelligence 10

Although a database is general-purpose software, it provides a solution for a variety
of technical requirements, including:

Recording and storing data
Reliably storing data and protecting each user’s data from the effects of other
users’ changes

Reading data for online viewing and reports
Providing a consistent view of the data

Analyzing data
Summarizing data, detecting trends and data relationships, and forecasting

The last two solutions can be deployed as a data warehouse, part of an infrastructure
that provides business intelligence used in strategic and tactical management of the
corporation or organization. Such solutions expose valuable business information
embedded in an organization’s data stores.

Data warehousing and business intelligence solutions are now widely deployed and
new projects continue to be extremely popular. There is a very simple reason behind
this trend: such projects are seen as core to the business and provide a return on
investment that can be grasped by the business community.

The trend is not new. Oracle began adding data warehousing features to Oracle7 in
the early 1990s. Additional features for warehousing and business intelligence
appeared in subsequent releases, enabling better performance, functionality, scalabil-
ity, and management. Oracle also offers tools for building and using a business
intelligence infrastructure, including data movement and business analyses tools and
applications.

A business intelligence infrastructure can enable business analysts to determine:

• How a business scenario compares to past business results

• New solutions by looking at the data differently

Business Intelligence Basics | 223

• What could happen in the future

• How business actions could be changed to impact the future

This chapter introduces the basic concepts, technologies, and tools used in data
warehousing and business intelligence. To help you understand how Oracle
addresses infrastructure and analyses issues, we’ll first describe some of the basic
terms and technologies.

Business Intelligence Basics
Why build a data warehouse or business intelligence solution? Why is the data in an
online transaction processing (OLTP) database part of only a business intelligence
solution? Data warehouses are often designed with the following in mind:

Strategic and tactical analyses can discern trends in data
Data warehouses often are used in creation of simple reports based on aggregate
values culled from enormous amounts of data. If OLTP databases were used to
create such aggregates on the fly, the database resources used would impact the
ability to process transactions in a timely manner. These ad hoc queries often
leverage compute-intensive analytic functions embedded in the database.

A significant portion of the data in a data warehouse is often read-only, with infre-
quent updates

Leveraging database manageability features can make it possible to deploy ware-
houses holding hundreds of terabytes of data, even where near real-time updates
of some of the data is occurring.

The data in OLTP systems is not “clean” or consistent across systems
Data input to OLTP systems, if not carefully controlled, is likely to contain
errors and duplication. Often, a key portion of the data warehouse loading pro-
cess involves elimination of these errors. In addition, since multiple OLTP
systems might differ in common data definitions, the loading process can be
used to consolidate this data into a single definition.

The design required for an efficient data warehouse differs from the standard normal-
ized design for a relational database

Queries are typically submitted against a fact table, which may contain summa-
rized data. The schema design often used, a star schema, lets you access facts
quite flexibly along key dimensions or “lookup” values. (The star schema is
described in more detail later in this chapter.) For instance, a data warehouse
user may want to compare the total amount of sales, which comes from a fact
table, by region, store in the region, and items, all of which can be considered
key dimensions. Today’s data warehouses often feature a hybrid schema that is a
combination of the star schema common in previous-generation data marts with
third normal form schema for detailed data that is common in OLTP systems
and enterprise data warehouses.

224 | Chapter 10: Oracle Data Warehousing and Business Intelligence

The Evolution of Business Intelligence
Gathering business intelligence is not a new idea. The use of corporate data for stra-
tegic decision-making beyond simple tracking and day-to-day operations has been
going on for almost as long as computing itself.

Quite early, builders and users of operational systems recognized potential business
benefits of analyzing the data in complementary systems. In fact, much of the early
growth in personal computers was tied to the use of spreadsheets that performed
analyses using data downloaded from the operational systems. Business executives
began to direct IT efforts toward building solutions to better understand the busi-
ness using such data leading to new business strategies. Today, solutions are
commonly provided in business areas such as customer relationship management,
sales and marketing campaign analysis, product management and packaging, finan-
cial analysis, supply chain analysis, and risk and fraud analysis.

In the 1980s, many organizations began using dedicated servers for these applica-
tions, collectively known then as decision support systems (DSS), supplementing their
management information systems. Decision-support queries tended to be particu-
larly CPU and memory intensive using read-only data, whereas traditional OLTP was
typically I/O intensive with a large number of updates to data. The characteristics of
queries were much less predictable (e.g., more “ad hoc”) than what had been experi-
enced in OLTP systems. This led to the development of data stores for decision
support apart from those for OLTP.

When Bill Inmon (whose books are noted in Appendix B) and others popularized the
term “data warehouse” in the early 1990s, a formalized common infrastructure for
building a solution came into being. The topology of business intelligence solutions
continued to evolve, as the next section illustrates. Today’s business intelligence
solutions often include infrastructure that exposes data from data warehouses and
also OLTP systems in reports. Underlying hardware has evolved such that I/O is now
a more important design consideration for data warehousing hardware platforms
(see Chapter 12).

A Topology for Business Intelligence
The classic data warehouse topology, serving as an enterprise-wide source of infor-
mation, is represented by the multitier topology shown in Figure 10-1.

This topology developed over many years for a variety of reasons. Initial efforts at
creating a single enterprise warehouse often resulted in “analysis paralysis.” Just as
efforts to define an enterprise-wide OLTP model can take years (due to cross-
departmental politics and the scope of the effort), similar attempts in data
warehousing also took much longer than business sponsors were willing to accept.
These efforts were further hampered by the continually changing analysis require-
ments necessitated by a changing marketplace. While the data elements and

Business Intelligence Basics | 225

requirements for operational systems can remain relatively stagnant over time,
understanding business trends can be like trying to catch lightning in a bottle.

Consequently, attempts at building such enterprise-wide models that would satisfy
everyone often satisfied no one.

Data Marts
When some large-scale, enterprise-only data warehouse efforts ended in dismal
failure, frustration and impatience followed. Some reacted and built department-
focused independent data marts by extracting data from the appropriate operational

Figure 10-1. Typical initial business intelligence topology

Warehouse Server

Data Marts

Clients

Operational Data Store

OLTP Servers

226 | Chapter 10: Oracle Data Warehousing and Business Intelligence

source systems. Many data marts were initially quite successful because they fulfilled
a specific business need relatively quickly.

However, problems began to surface. There was often no coordination between
departments regarding basic definitions, such as “customer.” If a senior manager
asked the same question of multiple departments, the answers provided by these
independent data marts were often different, thus calling into question the validity of
all of the marts. Many departments also encountered ongoing difficulty in managing
these multiple data marts and in maintaining extractions from operational sources
(which were often duplicated across multiple departments).

As architects took another look at their solutions, they began to realize that it was
very important to have a consistent view of the detailed data at an enterprise data
warehouse level. They also saw that data marts could solve business problems and
provide return on investment in an incremental fashion. Today, most successful
implementers simultaneously grow dependent data marts one business solution at a
time while growing the enterprise warehouse server in an incremental fashion.

The currently accepted definition of a data mart is simply a subject- or application-
specific data warehouse, usually implemented within a department. Typically, these
data marts are built for performance and may include a large number of summary
tables. Data marts were initially thought of as being small, since not all the detail
data for a department or data from other departments need be loaded in the mart.
However, some marts get quite large as they incorporate data from outside sources
(sometimes purchased) that isn’t relevant in other parts of the business.

In some organizations, data marts are deployed to meet specific project goals with
models optimized for performance for that particular project. Such data marts are
retired when the project is completed and the hardware is reused for other projects.
As the analysis requirements for a business change, the topology of any particular
data warehouse is subject to evolution over time, so developers must be aware of this
possibility.

Increasing focus on cost savings, manageability, and compliance are leading many to
reexamine the wisdom of having a large number of physically separate data marts. As
a result, consolidation of marts into the enterprise warehouse is a common trend.
More recent versions of Oracle enable effective management of different user com-
munities, helping to make such consolidation possible.

Operational Data Store and Enterprise Warehouse
The operational data store (ODS) concept also grew in popularity in the 1990s. The
ODS may best be described as a distribution center for current data. Like the OLTP
servers, the schema is highly normalized and the data is recent. The ODS serves as a
consolidation point for reporting and can give the business one location for viewing
current data that crosses divisions or departments. The popularity of the ODS grew

Data Warehouse Design | 227

in part as a result of companies in the midst of acquisitions and mergers. These orga-
nizations often face mixed-application environments. The ODS can act as a staging
location that can be used as the source for further transformations into a data ware-
house or into data marts.

The warehouse server, or enterprise data warehouse, is a multisubject historical infor-
mation store usually supporting multiple departments and often serving as the
corporate database of record. When an ODS is established, the warehouse server
often extracts data from the ODS. When an ODS isn’t present, data for the ware-
house is directly extracted and transformed from operational sources. External data
may also feed the warehouse server.

As noted previously, platform consolidation is popular within these tiers today. The
enterprise data warehouse can be the point of consolidation for the ODS and multi-
ple data marts. Although different logical models remain, they are consolidated to a
single platform and database.

OLTP Systems and Business Intelligence
True real-time data resides in the OLTP systems. Organizations can provide report-
ing out of such transaction processing systems side-by-side in portals or dashboards
with information from data warehouse systems. A key to providing meaningful dash-
boards is to provide high-quality data with consistent meaning. The quality of data
in OLTP systems is directly related to controlling data input to eliminate duplicate or
error-prone entries.

Consistent meaning can be resolved using master data management (MDM) solu-
tions. MDM solutions consist of data hubs that serve as a common reference point
for data supporting key business measurements such as customers, products, or
finance. Oracle offers a number of data hubs for these and other business areas to
enable building out of such an infrastructure.

Projects that leverage data from data warehouses, OLTP systems, and MDM solu-
tions are called data integration projects. Most business intelligence deployments, at
the time of publication of this edition, use just the data warehouse infrastructure as
the primary source of historic data for business intelligence. The extraction, transfor-
mation, and loading (ETL) techniques applied to the data warehouse are designed to
resolve differences in common data elements, to cleanse the data, and to provide a
historical database of record.

Data Warehouse Design
The database serves as the foundation of the business intelligence infrastructure: it is
the place where the data is stored. But there is more to business intelligence than
data—the infrastructure becomes useful only when business users use the data to

228 | Chapter 10: Oracle Data Warehousing and Business Intelligence

gain insight. This may seem like a trivial point, but we’ve seen numerous companies
build elegant infrastructure without consulting business users to determine business
needs or key performance indicators (KPIs) to be measured. Often, such deployed
projects end up supporting very few users, generate little activity, and little business
intelligence is gained.

Assuming that your infrastructure is well planned and there is a demand for the data,
your next challenge will be to figure out how to handle the demand. You will be
faced with the need to design your data warehouse and other infrastructure compo-
nents to deliver appropriate performance to your users—performance that may
initially seem far beyond your capabilities, since the information needed can involve
comparisons of massive amounts of detailed data.

When you start your design, also remember that this infrastructure will never be con-
sidered finished. When the business needs change, so too must components in the
infrastructure. Thus, the ability to track changes through metadata stored in a repos-
itory often becomes critical as part of the design work.

Various design tools can provide this capability. Oracle’s Warehouse Builder
(OWB), included with Oracle Enterprise Edition, Standard Edition, and Standard
Edition One databases (since 2006), provides a metadata repository and also the
capability to import metadata from operational tables and then forward-engineer
new schema and tables. A data warehouse designer creates columns for the new
tables and builds constraints for the new schema. Maps are then created between
source and target columns with appropriate transformations. DML scripts for cre-
ation of new tables, and PL/SQL or SQL*Loader scripts for ETL are automatically
generated.

As noted previously, data warehouses historically have had a different set of usage
characteristics from those of an OLTP database. One aspect that makes it easier to
meet data warehousing performance requirements is the high percentage of read
operations. Oracle’s locking model, described in detail in Chapter 8, is ideally suited
for data warehouse operations. Oracle doesn’t place any locks onto data that’s being
read, thus reducing contention and resource requirements for situations where there
are a lot of database reads. Since locks don’t escalate, Oracle is also extremely appro-
priate for near real-time data feeds into the warehouse in a scenario not unlike OLTP
workloads.

Warehousing usage characteristics lead to deploying different types of schema. In
OLTP databases, transaction data is usually stored in multiple tables and data items
are stored only once. If a query requests data from more than one transaction table,
the tables are joined together. Typically, the database query optimizer decides which
table to use as the starting point for the join, based on the assumption that the data
in the tables is essentially equally important.

Data Warehouse Design | 229

Although Oracle-based data warehouses are sometimes modeled as third normal
form (3NF) (described in Chapter 4), when business users need an understandable
schema to formulate their own ad hoc queries or analytical processing is required,
key transaction data can be more appropriately stored in a central fact table, sur-
rounded by dimension or lookup tables, as shown in Figure 10-2. The fact table can
contain summarized data for data items duplicated elsewhere in the warehouse, and
dimension tables can contain multiple hierarchies. As noted previously, when organi-
zations consolidate their data marts into enterprise data warehouses, many now
deploy a variation called a hybrid schema, a mixture of third normal form and star
schema.

Ralph Kimball, author of the widely read book The Data Warehouse Toolkit (Wiley;
see Appendix B for details), is largely credited with discovering that users of data
warehouses typically pose their queries in such a manner that a star schema, illus-
trated in Figure 10-2, is an appropriate model to use. A typical query might be some-
thing such as the following:

Show me how many sales of computers (a product type) were sold by a store chain (a
channel) in Wisconsin (a geography) over the past 6 months (a time).

The schema in Figure 10-2 shows a relatively large sales transactions table (called a
fact table) surrounded by smaller tables (called dimensions or lookup tables). The
query just described is often called multidimensional, since several dimensions are
included (and time is almost always one of them). Because these queries are typical
in a data warehouse, the recognition of the star schema by Oracle’s cost-based opti-
mizer can deliver enormous performance benefits.

Figure 10-2. Typical star schema

Product

Channel Time

Geography

Fact Table

Sales
Transactions

Category
Type
Brand
Model

Manufacturer
Distributor
Store Chain
Store

Region
District
State
City

Year
Quarter
Month
Week
Day

230 | Chapter 10: Oracle Data Warehousing and Business Intelligence

Query Optimization
Oracle first provided the ability to recognize a star schema in the query optimizer in
Oracle7 and has focused on making its cost-based query optimizer smarter in
response to business intelligence queries in subsequent database releases. Further
improving optimizer prediction accuracy, since Oracle Database 10g, optimizer
predictions are compared to actual runtime performance, and any errors are subse-
quently corrected automatically. The optimizer also can provide query rewrite
transparently to summary levels commonly deployed with star schema through
materialized views. Oracle Database 11g added query rewrite for the OLAP Option
as well as improved solving of queries containing inline views.

How does the optimizer handle a query against a star schema? First, it finds a sales
transactions fact table (shown in Figure 10-2) with a lot more entries than the sur-
rounding dimension tables. This is the clue that a star schema exists. As Oracle7
evolved, the optimizer began to produce much smarter plans. The optimizer for a
standard relational database typically would have tried to join each of the dimension
tables to the fact table, one at a time. Because the fact table is usually very large,
using the fact table in multiple joins takes a lot of time.

Cartesian product joins were added to Oracle7 to first join the dimension tables,
with a subsequent single join back to the fact table in the final step. This technique
works relatively well when there are not many dimension tables (typically six or
fewer, as a rule of thumb, to keep the Cartesian product small) and when data is rela-
tively well populated.

In some situations, there are a fairly large number of dimension tables or the data in
the fact table is sparse. For joining such tables, a parallel bitmap star join may be
selected by the optimizer.

In earlier releases of the Oracle database, DBAs had to set initialization parameters
(e.g., STAR_TRANSFORMATION) and gather statistics, enabling the optimizer to
recognize the best methods for solving such queries. Today, needed parameters are
preset upon installation and statistics are automatically gathered by the Oracle
database.

Bitmap Indexes and Parallelism
Bitmap indexes, described in Chapter 4, were first introduced in Oracle7 to speed up
the type of data retrieval and joins in data warehousing queries. Bitmap indexes in
Oracle are typically considered for columns in which the data has low cardinality.
Cardinality is the number of different values in an index divided by the number of
rows. There are various opinions about what low cardinality actually is. Some con-
sider cardinality as high as 10% to be low, but remember that if a table has a million
rows, that “low” cardinality would mean 100,000 different values in a column!

Query Optimization | 231

In a bitmap index, a value of 1 in the index indicates that a value is present in a par-
ticular row and 0 indicates that the value is not present. A bitmap is built for each of
the values in the indexed columns. Because computers are built on a concept of 1s
and 0s, this technique can greatly speed up data retrieval. In addition, join opera-
tions such as AND become a simple addition operation across multiple bitmaps. A
side benefit is that bitmap indexes can provide considerable storage savings.

Figure 10-3 illustrates the use of a bitmap index in a compound WHERE clause. Bit-
map indexes can be used together for even faster performance. The bitmap indexes
are essentially stacked together, as a set of punch cards might be. Oracle simply
looks for those parts of the stack with all the bits turned on (indicating the presence
of the value), in the same way that you could try to stick a knitting needle through
the portions of the card stack that were punched out on all of the cards.

In Oracle, star-query performance is improved when bitmap indexes are created on
the foreign-keys columns of the fact table that link to the surrounding dimension
tables. A parallel bitmap star join occurs in which the bitmaps retrieve only the
necessary rows from the fact table and the rows are joined to the dimension tables.
During the join, sparseness (i.e., a large quantity of empty values) is recognized
inherently in the bitmaps, and the number of dimension tables isn’t a problem. This
algorithm can also efficiently handle a snowflake schema, which is an extension of a
standard star schema in which there are multiple tables for each dimension.

Figure 10-3. Bitmap index operation in a compound WHERE clause

partno color size weight

001
002
003
004
005
006

GREEN
RED
RED
BLUE
RED
GREEN

MED
MED
SMALL
LARGE
MED
SMALL

98.1
1241
100.1
54.9
124.1
60.1

...

PARTS table

3 bits in
index entries

SELECT count(*)
FROM parts
WHERE

ANDsize = ‘MED’

color = ‘RED’

1 1

1 1

Index on ‘color’

color =

color =

color =

'BLUE'

'RED'

'GREEN'

size =

size =

size =

'SMALL'

'MED'

'LARGE'

Index on ‘size’

0 0 0 1 0 0 1 0 1 0 1 0 0 0 1 0

0 1 0 0 0 1 0 0 0 0 1 0 0 1

1 0 0 0 0 1 0 0 0 1 0 1 0 1 0 0

0 0 1 0 0 1 0 1 0 1 0 0 0 1 0 1

1 0 0 0 1 0 0 0 0 1 0 1 0 0

0 0 0 1 0 0 0 0 1 0 1 0 1 0 1 0

232 | Chapter 10: Oracle Data Warehousing and Business Intelligence

To further speed queries, Oracle9i added a bitmap join index from fact tables to
dimension tables. A bitmap join index is simply the bitmap index of a join of two or
more tables. The speedup in performance comes from avoiding actual table joins or
reducing the amount of data joined by taking into account restrictions in advance of
the joining of data. Performance speedup for star queries with multiple dimension
tables can be greatly improved since bitwise operations in star transformations can
now be eliminated.

Performing queries in parallel also obviously improves performance. Joins and sorts
are frequently used to solve decision-support queries. Parallelism is described in
Chapter 7. That chapter lists functions that Oracle can perform in parallel (see
“What Can Be Parallelized?”).

Real Application Clusters, which replaced Oracle Parallel Server as of Oracle9i, fur-
ther expands parallelism by enabling queries to transparently scale across nodes in
clusters or in grids of computer systems.

Remember that these Oracle features use the cost-based optimizer
and, prior to Oracle Database 10g, you should run statistics periodi-
cally (using the ANALYZE command) on the tables to ensure good
performance. Statistics gathering can be done in parallel.

Since Oracle Database 10g, statistics gathering is automatic and
populates the Automatic Workload Repository. For example, the
SQL Access Advisor leverages this information when making tun-
ing recommendations.

Summary Tables
Data within dimensions is usually hierarchical in nature (e.g., in the time dimension,
day rolls up to week, which rolls up to month, which rolls up to quarter, which rolls
up to year). If the query is simply looking for data summarized at a monthly level,
why should it have to sort through more detailed daily and weekly data? Instead, it
can simply view data at or above that level of the hierarchy. Formerly, data
warehousing performance consultants designed these types of summary tables—
including multiple levels of precalculated summarization. For example, all the time
periods listed in Figure 10-2 can be calculated on the fly using different groupings of
days. However, to speed queries based on a different time series, a data warehouse
can have values precalculated for weeks and months and stored in summary tables to
which queries can be redirected.

Materialized Views
Oracle8i introduced the concept of materialized views for the creation of summary
tables for facts and dimensions that can represent rollup levels in the hierarchies. A
materialized view provides precomputed summary data; most importantly, a

Analytics, OLAP, and Data Mining in the Database | 233

materialized view is automatically substituted for a larger detailed table when appro-
priate. The cost-based query optimizer can perform query rewrites to these summary
tables and rollup levels in the hierarchy transparently, often resulting in dramatic
increases in performance. For instance, if a query can be answered by summary data
based on sales by month, the query optimizer will automatically substitute the mate-
rialized view for the more granular table when processing the query. A query at the
quarter level might use monthly aggregates in the materialized view, selecting the
months needed for the quarter(s). Oracle Database 10g added query rewrite capabili-
ties such that the optimizer can make use of multiple appropriate materialized views.

Materialized views can be managed through Oracle Enterprise Manager (see also
Chapter 5). The SQL Advisor accessible in Enterprise Manager includes a SQL
Access Advisor that can recommend when to create materialized views.

Analytics, OLAP, and Data Mining in the Database
Analysis of large data sets is faster when it takes place in the database where the data
is stored. This section describes the database functions and other features available
for analytics and statistics, online analytical processing (OLAP) multidimensional
deployment choices, and data mining.

It is worth noting here that the growing use of Oracle for statistical computations led
to support for floating-point number types providing the precision outlined in the
IEEE 754-1985 standard (with minor differences). These are provided in the
datatypes BINARY_FLOAT and BINARY_DOUBLE in Oracle Database 10g and
more recent database releases.

Analytic and Statistical Functions
Oracle releases dating back to Oracle8i have continued to add new analytic and
statistical functions as SQL extensions to the core Oracle Enterprise Edition and
Standard Edition databases. These analytic functions now include:

Ranking functions
Used to compute a record’s rank with respect to other records. Functions
include RANK, DENSE_RANK, CUME_DIST, PERCENT_RANK, NTILE, and
ROW_NUMBER. Hypothetical ranking is supported.

Windowing aggregate functions
Used to compute cumulative and moving averages. Functions include SUM,
AVG, MIN, MAX, COUNT, VARIANCE, STDDEV, and FIRST_VALUE,
LAST_VALUE.

LAG/LEAD functions
Often used to compare values from similar time periods, such as the first quar-
ter of 2006 and the first quarter of 2007.

234 | Chapter 10: Oracle Data Warehousing and Business Intelligence

Reporting aggregate functions
Include SUM, AVG, MIN, MAX, COUNT, VARIANCE, STDDEV, and RATIO_
TO_REPORT.

Linear regression functions
Include REGR_COUNT, REGR_AVGX and REGR_AVGY, REGR_SLOPE,
REGR_INTERCEPT, REGR_R2, and other functions used in regression line fit-
ting for a set of numbers in pairs (e.g., having X and Y values).

Also supported in Oracle are pivoting operations, histograms (using WIDTH_
BUCKET), CASE expressions, filling gaps in data, and time-series calculations.

The database includes a statistics package, DBMS_STATS_FUNCS. Functions in the
statistics package support linear algebra, frequent itemsets, descriptive statistics,
hypothesis testing (T-test, F-test, Binomial test, Wilcoxon Signed Ranks Test, One-
Way ANOVA, Chi-square, Mann Whitney, Kolmogorov-Smirnov), crosstab statistics
(% statistics, chi squared, phi coefficient, Cramer’s V, contingency coefficient, and
Cohen’s kappa), and nonparametric correlation (Pearson’s correlation coefficients,
and Spearman’s and Kendall’s).

MODEL Clause in SELECT
The SQL MODEL clause first appeared in Oracle Database 10g as an extension to
the SELECT statement. This clause enables relational data to be treated as multidi-
mensional arrays (much like spreadsheets) and is also used to define formulas for the
arrays, avoiding multiple joins and UNION clauses.

MODEL supports analytical queries that include prior-year comparisons and share
of ancestor, and it is particularly useful in budgeting, forecasting, and other statisti-
cal applications. Example MODEL usages include calculating sales differences in two
geographies, calculating percentage change, and calculating net present value. The
SQL MODEL clause can also use simultaneous equations and regression in
calculations.

OLAP and Data Mining Capabilities
For stored cubes (objects with predefined multidimensional joins), facts, and dimen-
sions in the relational database, Oracle introduced the OLAP Option to the Oracle9i
database. OLAP database capabilities are most commonly accessed althrough SQL,
though there is also a Java API. Oracle Database 11g added support for OLAP SQL
query rewrite.

As an OLAP alternative, Oracle now offers a technology that is relational database-
agnostic: Essbase, from Hyperion (acquired by Oracle in 2007) is an OLAP engine
that can extract data from Oracle and other databases. This OLAP solution is espe-
cially popular for Hyperion’s financial applications and in cases where business

Analytics, OLAP, and Data Mining in the Database | 235

analysts want to generate their own cubes. Essbase cubes can also be accessed using
Oracle Business Intelligence Enterprise Edition (OBI EE) tools.

Data-mining algorithms were first embedded in the Oracle9i database in the Data
Mining Option. These were initially accessible via a Java API, but Oracle later added
a PL/SQL API.

For applications-based data mining independent of underlying database technology,
the OBI EE tools can utilize data-mining algorithms Oracle acquired with Sigma
Dynamics in 2006. This technology is known as Real-Time Decisions (RTD).

We describe OLAP and data mining in the database and Oracle’s business intelli-
gence tools in the following sections.

Database Extensibility and the Data Warehouse
A growing trend in data warehousing is the storage of multiple datatypes within the
database. These extended database capabilities are described in Chapter 14, but we’ll
quickly mention here how these options might be useful in data warehousing.

Multimedia

The Multimedia feature set (formerly knows as interMedia) opens up the possibili-
ties of including documents, audio, video, and some locator functions in the
warehouse. Of these, text retrieval (Oracle Text) is most commonly used in ware-
houses today. However, the number of organizations storing other types of data,
such as images, is growing. Often, storage of these types of data is driven by a need
to provide remote users with access.

Spatial Option

The Spatial Option is also relevant in a data warehouse in which data is retrieved
based on proximity to certain locations. Spatial data includes some type of geo-
graphic coordinates. Typically, companies use add-on products in conjunction with
Oracle’s Spatial Option. An example of this option’s use for data warehousing is a
marketing analysis application that determines the viability of retail outlets at vari-
ous locations.

XML

Oracle added native XML datatype support to the Oracle9i database, along with
XML and SQL interchangeability for searching. Oracle provided key technology in
the development of the XQuery standard, and began shipping a production version
of XQuery with Oracle Database 10g Release 2. XML database performance was
greatly improved in Oracle Database 11g through the introduction of binary XML.
Oracle estimates that binary XML offers performance gains of up to 15 times com-
pared to the XML LOBs that were previously available.

236 | Chapter 10: Oracle Data Warehousing and Business Intelligence

Managing the Data Warehouse
Once you’ve built a data warehouse topology, you could deploy multiple Oracle
databases to implement the data warehouse and its data marts. Enterprise-wide
warehouses are common on Unix servers, but are also appearing on clustered (RAC)
Linux platforms. Smaller data marts are common on Windows and Linux. Many
organizations are consolidating data marts and enterprise data warehouses on the
more scalable platforms.

Oracle Enterprise Manager provides a common GUI for managing these multiple
instances regardless of the underlying operating system. EM is browser-based with a
multiuser repository for tracking and managing the Oracle instances. (EM is dis-
cussed in much more detail in Chapter 5.)

In warehousing, in addition to basic management, ongoing tuning for performance is
crucial. Enterprise Manager supports many of the automated diagnostics and tuning
features added in Oracle Database 10g and more recent releases.

Within the largest warehouses and data marts, you may want to manage or maintain
availability to some of the data even as other parts of the database are moved offline.
Oracle’s Partitioning Option enables data partitions based on business value ranges
(such as date) or discrete values for administrative flexibility, while enhancing query
performance through the cost-based optimizer’s ability to eliminate access to non-
relevant partitions. For example, “rolling window” administrative operations can be
used to add new data and remove old data using time ranges. A new partition can be
added, loaded, and indexed in parallel, and optionally removed, all without impact-
ing access to existing data.

Range partitioning first became available in the Oracle8 Partitioning Option. Hash
partitioning was added to the Oracle8i Partitioning Option enabling the spread of
data evenly based on a hash algorithm for performance. Hashing may be used within
range partitions (composite partitioning) to increase the performance of queries while
still maintaining the manageability offered by range partitioning. Oracle9i intro-
duced list partitioning—partitions based on discrete values such as geographies. A
composite partitioning type, range-list partitioning, which allows you to partition by
dates within geographies, was added in Oracle9i Release 2. More composite types
were added in Oracle Database 11g including list-hash, list-list, list-range, and range-
range partitioning. Interval partitioning was also added in Oracle Database 11g,
providing automatic creation of range partitions when needed.

Other Software for the Data Warehouse
A data warehouse isn’t necessarily built with a single software product, nor is it sim-
ply a database. In addition to the database capabilities we’ve described, if you’re
going to build an effective data warehouse topology like the one we’ve outlined, your
software will provide the following functionality:

Other Software for the Data Warehouse | 237

Extraction of data from operational data sources
The movement of needed data from source systems for the purpose of loading a
data warehouse. This process might involve extracting a large amount of bulk
data or a steady stream of incremental changes.

Transformation and/or cleansing of data
Because the data in a data warehouse can come from many different sources, the
data must frequently be converted into a common format. Original data might
also need to be cleansed to eliminate or correct invalid values.

Loading the data warehouse/marts
This process might also occur in bulk or a steady stream.

Basic reporting
Standard reports should be easily accessible by nontechnical business analysts in
a browser-based portal or dashboard and could be published.

Ad hoc query and analysis
Tools business analysts can use for picking and choosing data items and build-
ing their own queries. The results can be published into reports.

Advanced OLAP for multidimensional analysis
More advanced analysis capability needed to spot business changes and trends
typically where a large number of dimensions are present.

Data mining
Usually used where there are a large number of variables present to determine a
best model for known outcomes and then used to predict future results where
outcomes are not known.

Metadata management
Store descriptive business and technical data and enable extended management
services such as versioning and impact analysis.

The following sections provide descriptions of how Oracle can deliver such function-
ality in various tools and database features and options.

Data Warehouses and Backups
Early data warehousing practitioners often overlooked the need to perform backups.
Their belief was that since data for the warehouse was extracted from operational sys-
tems, the warehouses could easily be repopulated from those same systems if needed.
However, as warehouses grew and the transformations needed to create and refresh
them evolved, it became evident that backups of data warehouses were necessary
because the transformation process had grown extremely complicated and time-
consuming. Today, planning for warehouse availability includes not only an
understanding of how long loading will take, but also backup and recovery operations.
Due to the tactical nature of such warehouses, planning often also includes designs for
high availability, disaster recovery, and lifecycle information management.

238 | Chapter 10: Oracle Data Warehousing and Business Intelligence

Extraction, Transformation, and Loading
The first three requirements described in the previous list are often handled by what
are called ETL tools (for extraction, transformation, and loading). Those who are
experienced in data warehouse solutions realize that the process of understanding
the data sources, designing the transformations, testing the loading process, and
debugging is often the most time-consuming part of deployment. Transformations
generally remove bogus data (including erroneous entries and duplicate entries), con-
vert data items to an agreed-upon format, and filter data not considered necessary for
the warehouse. These operations not only improve the quality of the data, but
frequently reduce the overall amount of data, and that, in turn, improves data ware-
house performance.

The frequency of extraction and loading is largely determined by the required timeli-
ness of the data in the warehouse. Most extraction and loading takes place on a
“batch” basis with a known time delay (typically subhourly or hourly or daily today).
Many first-generation warehouses were completely refreshed during the loading pro-
cess. As data volumes grew, this became impractical due to the limited time frames
available for loading. Today, updates to tables are most common. When a need for
near real-time data exists, warehouses can be loaded nearly continuously using a
trickle feed.

Is Cleanliness Best?
Once the data in the warehouse is “clean,” is this version of the true nature of the data
propagated back to the originating OLTP systems? This is an important issue for data
warehouse implementation. In some cases, a “closed loop” process is implemented
whereby updates are provided back to the originating systems. In addition to minimiz-
ing some of the cleansing that takes place during future extractions, operational
reports become more accurate.

Another viable option is to avoid cleansing by improving the quality of the data at the
time of its input into the operational system. As noted previously in this chapter, this
is critical if OLTP systems are to be directly accessed for business intelligence. Improv-
ing data quality at the source also enables high-speed loading techniques to be used in
near real-time data warehouses (since transformations can be eliminated).

Improving data quality at the source can sometimes be accomplished by not allowing
a “default” condition as allowable input into a data field. Presenting the data-entry per-
son with an array of valid options, one of which must be selected, is often a way to
ensure the most consistent and valid responses. Many companies also provide educa-
tion to the data-entry people, showing them how the data they’re keying in will be used
and what the significance of it is.

Other Software for the Data Warehouse | 239

Simple extraction and transportation of data is possible using one of several Oracle
database features:

Transparent Gateways and Heterogeneous Services
Provide a bridge to retrieve data from non-Oracle sources using Oracle SQL to
load an Oracle database. Heterogeneous Services provide ODBC connectivity to
non-Oracle relational sources. Gateways can optionally provide a higher level of
performance when extracting data from non-Oracle sources.

Transportable Tablespaces
Another feature for data movement, Transportable Tablespaces enable rapid
data movement between Oracle instances without export/import. Metadata (the
data dictionary) is exported from the source and imported to the target. The
transferred tablespace can then be mounted on the target. Oracle Database 10g
introduced cross-platform Transportable Tablespaces, which can move a
tablespace from one type of system (e.g., Solaris) to another (e.g., Linux).

Oracle Streams
Streams have been bundled with Oracle since Oracle9i Release 2. Oracle Streams
include Oracle’s log-based replication, Advanced Queues (AQ), and since Ora-
cle Database 10g, includes Transportable Tablespaces. Streams are often used
for near real-time data movement. Oracle Database 10g added support for
downstream capture, which allows changed data to be collected from log files,
eliminating overhead, RMAN and Transportable Tablespaces for instantiation,
support for LONG, LONG RAW, and NCLOB datatypes, and asynchronous
change data capture that uses Streams to transport only changed records from a
source database to a target.

Data Pump Fast Import/Export
Added in Oracle Database 10g and enabled via external table support, Data
Pump is a newer import/export format. Parallel direct path loading and unload-
ing are supported.

Each of these database features is typically used for high-performance data transfers and
not (by themselves) for difficult transformations. Oracle Warehouse Builder (OWB) is
the Oracle database’s ETL tool used for building maps from extraction sources, through
predefined or custom transformations to target tables. OWB then can be used to auto-
matically generate the scripts needed to perform the ETL. More than just an ETL tool,
OWB also can be used as a data warehouse design tool and provides a metadata reposi-
tory. Designs may also be imported from a variety of design tools such as Oracle
Designer, CA’s ERwin, Sybase PowerDesigner, and Business Objects Designer.

In most warehouse building, metadata is first imported that describes source tables,
including Oracle (via database links) and other RDBMS systems (through ODBC or
gateways) and flat files. Target tables are designed or imported, and source metadata
is mapped to target metadata, including transformations. OWB’s basic set of
transformations include a name and address cleansing operator for use with Oracle

240 | Chapter 10: Oracle Data Warehousing and Business Intelligence

partners’ libraries and applications that perform “householding,” matching, and
merging of data. Advanced features such as support for slowly changing dimensions
and pluggable mappings are available in the OWB Enterprise Option. The OWB
Data Quality Option includes support for data profiling and data rules.

OWB can validate the source-to-target mappings (see Figure 10-4). Once validated,
you can then generate any of the following:

• DDL if target tables are to be created

• SQL*Loader control files for the loading of flat files

• PL/SQL scripts for ETL from relational sources

Scripts are deployed to and run at the target data warehouse, typically scheduled
using the Enterprise Manager job scheduler. In this way, OWB is more of an “ELT”
tool since the transformations leverage the target database engine. For more complex
scheduling of ETL jobs where certain prerequisites must be met, OWB leverages
Oracle Workflow components.

OWB provides access to a number of other non-Oracle sources. Connectors for the
E-Business Suite and PeopleSoft provide access to technical and business metadata
and enable inclusion of objects from those ERP applications into mappings and pro-
cess flows. The SAP Connector is similar but also includes an ABAP code generator
used to build access to any SAP table on any database, including cluster tables,
through an RFC connection.

For high-speed loading of flat files, Oracle SQL*Loader’s direct path load option pro-
vides rapid loading by bypassing the buffer cache and rollback mechanism and

Figure 10-4. Typical Oracle Warehouse Builder mapping validation

Other Software for the Data Warehouse | 241

writing directly to the datafile. You can run SQL*Loader sessions in parallel to fur-
ther speed the table-loading process (as many warehouses need to be loaded in a
limited “window” of time). Many popular extraction tools, including OWB, gener-
ate SQL*Loader scripts.

Oracle9i first added key ETL functionality in the core database engine, including
support for external tables, table functions, merge (i.e., insert or update depending
on whether a data item exists), multitable inserts, change data capture, and resum-
able statements. Today, OWB can be used to leverage this functionality. Additionally,
OWB can create trickle feeds through the use of Streams and Advanced Queues.

For ETL into both Oracle databases and non-Oracle targets, Oracle offers a product
named Oracle Data Integrator (ODI). This product was acquired in 2007 and was
formerly known as Sunopsis. ODI features Knowledge Modules that define integra-
tion capabilities including extraction with change data capture, loading and
unloading utilities, SQL-based loading and unloading, and transformation logic SQL.
The Knowledge Modules are modifiable. The product architecture includes a develop-
ment environment that makes use of the Knowledge Modules as templates in
declarative design processes and an orchestration agent.

In addition to providing heterogeneous ETL, ODI can be used to deploy and inte-
grate data and transformation services in a Service-Oriented Architecture (SOA)
infrastructure. ODI is a key component in Oracle MDM solutions and in some of
Oracle’s emerging business intelligence applications.

Reporting and Ad Hoc Query Tools
Marketing, financial, and other business analysts are rarely interested in the storage
and schema that hold their information. Their interest level rises when the discus-
sion turns to the tools they’ll be using. Business intelligence tools are often evaluated
and purchased within individual business areas, sometimes without close IT coordi-
nation. For implementations leveraging Oracle databases, you have a choice between
suites of Oracle business intelligence tools or popular independent vendors’ prod-
ucts, such as Business Objects, Cognos, and MicroStrategy.

Oracle’s business intelligence tools are bundled in three suites today: Oracle Busi-
ness Intelligence Enterprise Edition, Standard Edition One, and Standard Edition. In
addition, Oracle has obtained through acquisition the Hyperion Intelligence Server
and Client products now bundled in Oracle Business Intelligence Enterprise Edition
Plus. Oracle’s most strategic offerings are the Enterprise Edition Plus and Standard
Edition One, although development and support continues for all of the other
products.

Oracle Business Intelligence Enterprise Edition (OBI EE) contains the former Siebel
Analytics tools and Oracle BI Publisher (previously XML Publisher). It includes opti-
mizations for Oracle and non-Oracle databases. Included in the suite are:

242 | Chapter 10: Oracle Data Warehousing and Business Intelligence

Interactive Dashboards
Provide interactive browser-based collection of content from other OBI EE
components such as Answers. This content can include guided analytics to help
less-sophisticated business users explore the right additional information available.

Answers
Thin client (DHTML) interactive tool for generating ad hoc queries and analysis.
Answers can be used directly against relational databases and MOLAP data stores.
Generated reports can be posted to the dashboard or serve as input to BI Publisher.

Reporting and Publishing (BI Publisher)
Template-based publishing solution that incorporates XML data extracts and
produces reports in various output formats including PDF, RTF, HTML, Excel,
XML, and eText. Report editors include popular desktop tools such as Adobe
Acrobat and Microsoft Word.

Delivers
Infrastructure built by defining “iBot” alerts that trigger based on user-specified
conditions. Delivers can set up publish-and-subscribe mechanisms to email,
dashboard alerts, SMS text messaging, and other such notifications. It can also
be linked to business process flows generated using Oracle’s Business Process
Execution Language (BPEL).

Disconnected Analytics
Enables a business analyst to leverage the suite of tools disconnected from the
network by accessing local data on a laptop. Resynchronization occurs when the
analyst reconnects to his network.

Office Plug-in
Supports access to the BI Server from popular Microsoft tools such as Excel.

BI Server
Middle-tier for the previously described components that provides a business
model and extraction layer, caching services, calculation and integration engine,
and optimized data access into supported sources. Supported databases include
the Oracle database and Oracle OLAP Option (analytic workspaces), Microsoft
SQL Server and Analysis Services, IBM DB2, Teradata, and other ODBC
sources. Other sources can include Oracle Business Intelligence (BI) Applica-
tions, PeopleSoft EPM, E-Business Suite, Siebel, Fusion Business Intelligence
Applications, and SAP.

BI Server Administrator
Used in managing the presentation layer, business model and mapping, and
physical layer defined in the BI Server. Business analyst and user access and
groupings are configured through this tool.

In the OBI EE Plus packaging, Hyperion components were added; these include the
Hyperion Foundation Services, Interactive Reporting, SQR production reporting,
Financial Reporting, Smartview for Office, and Web Analysis.

Other Software for the Data Warehouse | 243

Figure 10-5 illustrates a typical query formulation using Answers in the OBI EE Suite.

Figure 10-6 illustrates the query output as viewed in Answers.

Figure 10-5. Typical query using Answers to produce ranked results

Figure 10-6. Query results viewed in Answers

244 | Chapter 10: Oracle Data Warehousing and Business Intelligence

The Oracle Business Intelligence Standard Edition One packaging includes a subset
of the above and is intended for small and medium-sized implementations (e.g.,
deployed on a maximum of two CPUs or four cores and supporting from 5 to 50
users). Components include Oracle Dashboards, Answers, BI Publisher, BI Server,
and BI Server Administrator. In addition, OBI SE One includes the Oracle Database
Standard Edition One and Oracle Warehouse Builder.

Oracle’s previous-generation business intelligence tools, targeting Oracle databases
only, are bundled in the Oracle Business Intelligence Standard Edition (OBI EE SE)
and in the Oracle Application Server. The tools include the following:

Discoverer Plus
Easy-to-use Java applet-based frontend for picking and choosing data items used
in building queries by business users. Discoverer is designed to access Oracle
relational databases and the Oracle OLAP Option (analytic workspaces). Users
can generate their own reports and deploy them to the Web as HTML files. Dis-
coverer has a query governor that can predict the amount of time a query will
take based on comparisons in records of previous queries kept in the database
server.

Discoverer Viewer
Thin client used most often to view Discoverer reports. It provides a subset of
the functionality of Discoverer Plus.

Discoverer Portlet Provider
Used for embedding Discoverer reports into enterprise portal solutions such as
Oracle Portal.

Discoverer Administration Edition
Used for managing the Discoverer End User Layer (EUL), maintaining business
areas and mapping relevant database tables and views, and controlling tasks
available to business analysts and users.

Reports
Wizard-based frontend for building reports that can then be deployed to the
Web for access as Adobe Acrobat, plain text, or HTML files. With this tool, you
can cache reports on a middle-tier server for better performance. The tool also
provides some limited drill-down search capabilities, in which a user can ask for
more detail about a particular portion of a report.

Oracle has enterprise portal offerings (Oracle Portal, and more recently WebCenter)
available as part of the Oracle Application Server. These provide an integration point
for custom-built business intelligence applications using Oracle Business Intelligence
tools. For example, Answers can publish portlets to an enterprise portal via the JSR
specification. An enterprise portal can also provide access to a number of other appli-
cations and web sites through its interface, and it is highly customizable by users.

Other Software for the Data Warehouse | 245

OLAP and OLAP Applications Building
As business users become more sophisticated, their questions evolve from “what
happened” to “what trends are present and what might happen in the future?” OLAP
tools provide the ability to handle time-series and mathematical analysis for under-
standing past trends and forecasting the future.

OLAP initially grew around the early inability of relational databases to effectively
handle multidimensional queries (described previously in the section “Data Ware-
house Design”). This led to OLAP tools packaged with their own data “cubes” where
data is downloaded from relational sources into the cubes.

These separate database engines are called Multidimensional Online Analytical Pro-
cessing engines, or MOLAP engines. Examples include Oracle’s Express Server and
Oracle’s Hyperion Essbase, as well as the Microsoft Analysis Services. Such MOLAP
engines handle queries extremely quickly and work best when the data is not
updated frequently (because the cube-generation process takes time). Oracle’s
Essbase offering provides a MOLAP engine that can be used in conjunction with a
variety of relational database engines.

OLAP functionality became more common in relational databases since star schema
containing summary levels are supported to various degrees in many databases and
because there is an increased need for very frequently updated data. When used in
this fashion, the interaction is called ROLAP, which stands for Relational Online
Analytical Processing. Tools that can work against either relational databases or
MOLAP engines are sometimes referred to as hybrid tools. For ROLAP deployment,
Oracle’s Business Intelligence tools and several other tools can leverage ANSI stan-
dard analytic functions built into the database as SQL extensions and can also access
the OLAP Option, a MOLAP cube within the relational database, via SQL.

Oracle Database 11g significantly improved the flexibility of accessing the Oracle
database OLAP Option. Although queries were accessible via SQL in the past, busi-
ness users needed to specifically point their queries to OLAP Option cubes. When
deployed in Oracle Database 11g, the OLAP cubes can be used transparently as an
alternative to materialized views since Oracle’s SQL query rewrite recognizes the cubes.
The materialized view refresh can refresh OLAP cubes as of Oracle Database 11g.

OLAP Option cubes are deployed in what are called analytic workspaces. They can
be created using Oracle Warehouse Builder or using a simplified logical dimensional
modeling tool called the Analytic Workspace Manager (AWM). Both tools provide
interfaces for creation of the cubes and for building maps from relational tables into
the cubes.

Custom OLAP applications can be built using Oracle’s JDeveloper and business
intelligence beans, although this is much less common than using off-the-shelf tools.

246 | Chapter 10: Oracle Data Warehousing and Business Intelligence

The Java beans provide prebuilt components for manipulating tables, crosstabs, and
graphs and for building queries and calculations similar to the functionality previ-
ously found in Express. JDeveloper generates Java code utilizing these building
blocks that maps to the Java OLAP API provided by Oracle’s OLAP Option.

Data Mining
Data mining, an often overused and misunderstood term in data warehousing, is the
use of mathematical algorithms to model relationships in the data that wouldn’t be
apparent by using other tools. Most companies shouldn’t approach data mining
unless analysts have met the following criteria:

• An understanding of the quality and meaning of the data in the warehouse.

• Business insight gained using other tools and the warehouse.

• An understanding of a business issue being driven by too many variables to
model outcomes in any other way.

In other words, data-mining tools are not a replacement for the analytical skills of
data warehouse users.

The data-mining tools themselves can rely on a number of techniques to produce the
relationships, such as:

• Extended statistical algorithms, provided by statistical tools vendors, that can
highlight statistical variations in the data.

• Clustering techniques that show how business outcomes can fall into certain
groups, such as insurance claims versus time for various age brackets. In this
example, once a low-risk group is found or classified, further research into influ-
encing factors or “associations” might take place.

• Logic models (if A occurs, then B or C are possible outcomes) validated against
small sample sets and then applied to larger data models for prediction, com-
monly known as decision trees.

• Neural networks “trained” against small sets, with known results to be applied
later against a much larger set.

• Anomaly detection used to detect outliers and rare events.

• Visualization techniques used to graphically plot variables and understand
which variables are key to a particular outcome.

Data mining is often used to solve difficult business problems such as fraud detec-
tion and churn in micro-opportunity marketing, as well as in other areas where many
variables can influence an outcome. Companies servicing credit cards use data min-
ing to track unusual usage—for example, the unexpected charging to a credit card of
expensive jewelry in a city not normally traveled to by the cardholder. Discovering
clusters of unusual buying patterns within certain small groups might also drive

Other Software for the Data Warehouse | 247

micro-opportunity marketing campaigns aimed at small audiences with a high prob-
ability of purchasing products or services.

A recent trend among relational database providers is tighter integration of data-
mining algorithms into the relational database. Oracle’s data-mining strategy initially
included a client/server product called Oracle Darwin to provide algorithms for mod-
eling associations, neural networks, classification and regression trees, and clusters
against Oracle tables or flat files. Oracle began to embed algorithms packaged as the
Data Mining Option into the Oracle9i database. Algorithms now in the Data Mining
Option include Naïve Bayes, Associations, Adaptive Bayes Networks, Clustering,
Support Vector Machines (SVM), Nonnegative Matrix Factorization (NMF), Deci-
sion Trees, and Generalized Linear Models (as of Oracle Database 11g, supporting
Binary Logistic Regression and Multivariate Linear Regression). The algorithms are
accessible via Java and PL/SQL APIs. Other data mining capabilities available
include text mining (providing document clustering and classification) and BLAST
similarity searches leveraging the SVM algorithms (common in genetic research).

Data mining applications can be custom-built using Oracle’s Data Miner tool. Data
Miner is used to develop, test, and score the models. Generally, the data must first be
prepared for mining by binning, normalizing, and adjusting for missing values. The
Data Mining Option in Oracle Database 11g added the capability to automate this
data preparation process in the database. Data Miner provides the ability to define
metadata, tune the generated Java code, view generated XML files, and test applica-
tion components. Data-mining analysts can also use tools such as InforSense or SPSS
Clementine to build models that leverage the Oracle Data Mining Option algorithms
and manage the development process.

Business Intelligence Applications
Business intelligence applications are prebuilt solutions providing extended report-
ing and “dashboard-like” interfaces to display business trends. These applications
directly access OLTP schema (Oracle’s Daily Business Intelligence) or more com-
monly access solutions with infrastructure similar to traditional data warehouses.
Examples of product suites that take the latter approach include Oracle Business
Intelligence Applications, PeopleSoft EPM, and SAP’s Business Warehouse, all often
deployed on Oracle databases.

The business intelligence applications often focus on specific areas of the business,
such as marketing or financial analysis. For example, Oracle’s Hyperion Financial Per-
formance Management applications address financial planning and budgeting. Such
applications include predefined queries, reports, and charts that deliver the kind of
information required for a particular type of business analysis while sparing the busi-
ness user the complexity of creating these objects from scratch. The data warehousing
type of solutions also include prebuilt ETL from supported data sources.

248 | Chapter 10: Oracle Data Warehousing and Business Intelligence

Oracle E-Business Suite’s Daily Business Intelligence (DBI) provides access into Ora-
cle transactions tables and materialized views. Access is through prebuilt Oracle
Business Intelligence workbooks containing prepopulated business metadata. The
most recent Oracle toolset supported is OBI EE. Oracle DBI modules include Com-
pliance, Customer Support, Financials, Human Resources, Procurement, Product
Lifecycle, Projects, Marketing, Maintenance, Sales, Supply Chain, and others.

Oracle Business Intelligence Applications include more than 2500 KPIs in OBI EE
and prebuilt mappings for ETL from Siebel, Oracle E-Business Suite, PeopleSoft,
SAP, and other applications. Formerly known as the Siebel Analytics applications,
the applications cover the areas of Sales, Service and Contact Center, Marketing,
Financial, Supply Chain, and Workforce. Oracle Business Intelligence Applications
have been designated as Oracle’s flagship business intelligence horizontal applica-
tions offering. As such, Oracle is continuing to extend the KPIs provided, the ETL
mappings, and the business areas covered.

The PeopleSoft EPM offering includes more than 1,200 metrics with prebuilt map-
pings from PeopleSoft and JD Edwards applications. EPM packaged warehouses
include Human Capital Management, Financials, Campus Solutions, Supply Chain,
and Customer Relationship Management. These applications also support OBI EE as
a frontend tool.

The promise of such prebuilt solutions is that they provide easier-to-deploy solutions
with more out-of-the-box functionality. While some customization will probably
always be needed, the time required to deploy an initial and useful solution can be
substantially reduced.

The Metadata Challenge
On the one hand, metadata—or descriptive data about data—is incredibly impor-
tant. Virtually all types of interactions with a database require the use of metadata,
from datatypes of the data to business meaning and history of data fields.

On the other hand, metadata is useful only if the tools and clients who wish to use it
can leverage it. One of the great challenges is to create a set of common metadata
definitions that allows tools and databases from different vendors to interact.

There have been a number of attempts to reach an agreement on common metadata
definitions. In 2000, a standard was ratified that defines a common interface for
interchange of metadata implementations. Named the Common Warehouse Meta-
data Interchange (CWMI) by the Object Management Group (OMG), this standard
is based on XML interchange. Oracle was one of the early proponents and develop-
ers of the technology in this standard. For example, Oracle has a CWM bridge for
exchanging metadata stored in the Oracle Warehouse Builder repository. OWB also
includes a metadata viewer for more detailed metadata reports, and a viewer for data
lineage and impact analysis diagrams.

Best Practices | 249

As noted earlier in this chapter, an emerging complementary solution—one in which
ETL into a single data warehouse is not the entire solution—is the leveraging of mas-
ter data management and data hub solutions. Today, most organizations are still a
long way from consolidated metadata, and when they have tried to do this as an IT
best-practice project, they generally have not been successful. Such projects are usu-
ally adopted only when delivered within a business intelligence project that delivers
business value.

Best Practices
Those experienced in business intelligence generally agree that the following are typi-
cal reasons why these projects fail:

Failure to involve business users, IT representatives, sponsoring executives, and anyone
else with a vested interest throughout the project process

Not only do all of these groups provide valuable input for creating a business
intelligence solution, but lack of support by any of them can cause a project to
fail.

Overlooking the key reasons for the business intelligence infrastructure
During the planning stages, IT architects can lose sight of the forces driving the
creation of the solution.

Overlooked details and incorrect assumptions
A less-than-rigorous examination of the environment can doom the project to
failure.

Unrealistic time frames and scope
As with all projects, starting the creation of a business intelligence solution with
too short a time frame and too aggressive a scope will force the team to cut cor-
ners, resulting in the mistakes previously mentioned.

Failure to manage expectations
Data warehouses and business intelligence solutions, like all technologies, are
not a panacea. You must make sure that all members of the team, as well as the
eventual users of the solution, have an appropriate set of expectations.

Tactical decision-making at the expense of long-term strategy
Although it may seem overly time-consuming at the start, you must keep in
mind the long-term goals of your project, and your organization, throughout the
design and implementation process. Failing to do so has two results: it delays the
onset of problems, but it also increases the likelihood and severity of those
problems.

Failure to leverage the experience of others
There’s nothing like learning from those who have succeeded on similar projects.
It’s almost as good to gain from the experience of others who have failed at simi-
lar tasks; at least you can avoid the mistakes that led to their failures.

250 | Chapter 10: Oracle Data Warehousing and Business Intelligence

Successful business intelligence projects require the continuous involvement of busi-
ness analysts and users, sponsoring executives, and IT. Ignoring this often-repeated
piece of advice is probably the single biggest cause of many of the most spectacular
failures. Establishing this infrastructure has to produce a clear business benefit and
an identifiable return on investment (ROI). Executives are key throughout the
process because business intelligence coordination often crosses departmental
boundaries, and funding likely comes from high levels.

Your business intelligence project should provide answers to business problems that
are linked to key business initiatives. Ruthlessly eliminate any developments that
take projects in another direction. The motivation behind the technology implemen-
tation schedule should be the desire to answer critical business questions. Positive
ROI from the project should be demonstrated during the incremental building
process.

Common Misconceptions
Having too simplistic a view during any part of the building process (a view that
overlooks details) can lead to many problems. Here are just a few of the typical (and
usually incorrect) assumptions people make in the process of implementing a busi-
ness intelligence solution:

• Sources of data are clean and consistent.

• Someone in the organization understands what is in the source databases, the
quality of the data, and where to find items of business interest.

• Extractions from operational sources can be built and discarded as needed, with
no records left behind.

• Summary data is going to be adequate, and detailed data can be left out.

• IT has all the skills available to manage and develop all the necessary extraction
routines, tune the database(s), maintain the systems and the network, and per-
form backups and recoveries in a reasonable time frame.

• Development is possible without continuous feedback and periodic prototyping
involving analysts and possibly sponsoring executives.

• The warehouse won’t change over time, so “versioning” won’t be an issue.

• Analysts will have all the skills needed to make full use of the infrastructure or
the business intelligence tools.

• IT can control what tools the analysts select and use.

• The number of users is known and predictable.

• The kinds of queries are known and predictable.

• Computer hardware is infinitely scalable, regardless of choices made.

Best Practices | 251

• If a business area builds a data mart or deploys an appliance independently, IT
won’t be asked to support it later.

• Consultants will be readily available in a pinch to solve last-minute problems.

• Metadata or master data is not important, and planning for it can be delayed.

Effective Strategy
Most software and implementation projects have difficulty meeting schedules.
Because of the complexity in business intelligence projects, they frequently take
much longer than the initial schedule, and that is exactly what executives who need
the information to make vital strategic decisions don’t want to hear! If you build in
increments implementing working prototypes along the way, the project can begin
showing positive return on investment, and changes in the subsequent schedule can
be linked back to real business requirements, not just back to technical issues (which
executives don’t ordinarily understand).

You must avoid scope creep and expectations throughout the project. When you
receive recommended changes or additions from the business side, you must con-
firm that these changes provide an adequate return on investment or you will find
yourself working long and hard on facets of the infrastructure without any real pay-
off. The business reasoning must be part of the prioritization process; you must
understand why trade-offs are made. If you run into departmental “turf wars” over
the ownership of data, you’ll need to involve key executives for mediation and
guidance.

The pressure of limited time and skills and immediate business needs sometimes
leads to making tactical decisions in establishing a data warehouse at the expense of
a long-term strategy. In spite of the pressures, you should create a long-term strategy
at the beginning of the project and stick to it, or at least be aware of the conse-
quences of modifying it. There should be just enough detail to prevent wasted efforts
along the way, and the strategy should be flexible enough to take into account busi-
ness acquisitions, mergers, and so on.

Your long-term strategy must embrace emerging trends, such as the need to meet
compliance initiatives or the need for highly available solutions. The rate of change
and the volume of products being introduced sometimes make it difficult to sort
through what is real and what is hype. Most companies struggle with keeping up
with the knowledge curve. Traditional sources of information include vendors, con-
sultants, and data-processing industry consultants, each of which usually has a
vested interest in selling something. The vendors want to sell products; the consult-
ants want to sell skills they have “on the bench,” and IT industry analysts may be
reselling their favorable reviews of vendors and consultants to those same vendors and
consultants. Any single source can lead to wrong conclusions, but by talking to multi-
ple sources, some consensus should emerge and provide answers to your questions.

252 | Chapter 10: Oracle Data Warehousing and Business Intelligence

The best place to gain insight is discussing business intelligence projects with other
similar companies—at least at the working-prototype stage—at conferences. Find-
ing workable solutions and establishing a set of contacts to network with in the
future can make attendance at these conferences well worth the price—and can be
more valuable than the topics presented in the standard sessions.

253

Chapter 11 CHAPTER 11

Oracle and High Availability11

The data stored in your databases is one of your organization’s most valuable assets.
Protecting and providing timely access to this data when it is needed for business
decisions is crucial for any Oracle site.

As a DBA, system administrator, or system architect, you’ll probably use a variety of
techniques to ensure that your data is adequately protected from catastrophe. Of
course, implementing proper backup operations is the foundation of any availability
strategy, but there are other ways to avoid a variety of possible outages that could
range from simple disk failures to a complete failure of your primary site.

Computer hardware is, by and large, extremely reliable, and that can tempt you to
postpone thinking about disaster recovery and high availability. Most software is also
very reliable, and the Oracle database protects the integrity of the data it holds even
in the event of software failure. However, hardware and software will fail occasion-
ally. The more components involved, the greater the likelihood of downtime at the
worst time.

The difference between inconvenience and disaster is often the presence or absence
of adequate recovery plans. This chapter should help you understand all of the
options available when deploying Oracle so you can choose the best approach for
your site.

With Oracle, you can guarantee that your precious data is highly available by lever-
aging built-in capabilities such as instance recovery or options such as Real Applica-
tion Clusters. However, equally important in deploying a high-availability solution is
the implementation of the appropriate procedures to safeguard your data. This chap-
ter covers these various aspects of high availability.

254 | Chapter 11: Oracle and High Availability

What Is High Availability?
Before we can begin a discussion of how to ensure a high level of availability for your
data, you need to understand the exact meaning of the term availability.

Availability can mean different things for different organizations. For this discus-
sion, we’ll consider a system to be available when it is up (meaning that the database
can be accessed by users) and working (meaning that the database is delivering the
expected functionality to business users at the expected performance).

Most businesses depend on data availability. More recently, accessibility to data via
web-based solutions means that database failures can have an even more dramatic
impact on business. Failures of such systems accessed by a wider community out-
side of company boundaries are, unfortunately, immediately and widely visible and
can seriously impact a company’s financial health and image. Consider the web-
based customer service provided by package shipping companies that enable customers
to perform package tracking. As these customers come to depend on such service, inter-
ruptions in that service can cause these same customers to move to competitors.

Taking this a step further, consider complexities in accessing data that resides in
multiple systems. Integrating multiple systems can increase chances of single failure
and could cause access to an entire supply chain to be unavailable.

To implement databases that are highly available, you must design an infrastructure
that can mitigate downtime, such as by deploying redundant hardware. You must
also embrace techniques that allow recovery from disasters, such as by implement-
ing appropriate backup routines.

Measuring and Planning Availability
Most organizations initially assume that they need data access 24/7, meaning that
the system must be available 24 hours a day, 7 days a week. Quite often, this require-
ment is stated with little examination of the business functions the system must
support. As the cost of technology components declines and reliability increases,
many feel that achieving very high levels of availability should be simple and cheap.

Unfortunately, while many components are becoming cheaper and more reliable,
component availability doesn’t equate to system availability. The complex layering of
hardware and software in today’s two- and three-tier systems introduces multiple
interdependencies and points of failure. Achieving very high levels of availability for
a system with varied and interdependent components is not usually simple or
inexpensive.

To provide some perspective, consider Table 11-1, which translates the percentage of
system availability into days, minutes, and hours of annual downtime based on a
365-day year.

What Is High Availability? | 255

Large-scale systems that achieve over 99 percent availability can cost millions of dol-
lars to design and implement and can have correspondingly high ongoing operational
costs. Marginal increases in availability can require large incremental investments in
system components. Moving from 95 to 99 percent availability is likely to be costly,
while moving from 99 to 99.99 percent will probably be costlier still.

Another key aspect of measuring availability is the definition of when the system
must be available. A required availability of 99 percent of the time during normal
working hours (e.g., from 8 a.m. to 5 p.m.) is very different from 99 percent avail-
ability based on a 24-hour day. In the same way that you must carefully define your
required levels of availability, you must also consider the hours during which avail-
ability is measured. For example, a lot of companies take orders during “normal”
business hours. The cost of an unavailable order-entry system is very high during the
business day, but drops significantly after hours. Thus, scheduled downtime can make
sense after hours that will, in turn, help reduce unplanned failures during business
hours. Of course, in some multinational companies and the world of the Internet, a
global reach implies that the business day never ends.

That initial requirement that a system be available 24/7 must be put in the context of
the cost in deploying and maintaining such a system. An examination of the
complexity and cost of very high availability will sometimes lead to compromises
reducing goals and budgets for system availability.

The costs of achieving high availability are certainly justified in some cases. It might
cost a brokerage house millions of dollars for each hour that key systems are down.
A less-demanding business, such as catalog sales, might lose only thousands of dol-
lars an hour by using a less-efficient manual system that acts as a stopgap measure.
But, regardless of the cost of lost business opportunity, an unexpected loss of avail-
ability can cut into the productivity of employees and IT staff alike.

Table 11-1. System availability

% availability System downtime per year

Days Hours Minutes

95.000 18 6 0

96.000 14 14 24

97.000 10 23 48

98.000 7 7 12

99.000 3 16 36

99.500 1 20 48

99.900 0 9 46

99.990 0 1 53

99.999 0 0 5

256 | Chapter 11: Oracle and High Availability

Causes of Unplanned Downtime
There are many different causes of unplanned downtime. You can prevent some very
easily, while others require significant investments in site infrastructure, telecommu-
nications, hardware, software, and skilled employees. Figure 11-1 summarizes some
of the more common causes of system failures.

When creating a plan to guarantee the availability of your application, you should
consider all of the items shown in this chart as well as other potential causes of sys-
tem interruption that are specific to your own circumstances. As with all planning,
it’s much better to consider all options, even if you quickly dismiss them, than to be
caught off guard when an unexpected event occurs.

System Availability Versus Component Availability
A complete system is composed of hardware, software, and networking components
operating as a technology stack. Ensuring the availability of individual components
doesn’t necessarily guarantee system availability. Different strategies and solutions
exist for achieving high availability for each of the system components. Figure 11-2
illustrates the technology stack used to deliver a potential system.

Figure 11-1. Causes of unplanned downtime

Unplanned Downtime

Software Failures Hardware Failures Human Error Disaster

Operating System

Database

Middleware

Application

Network

System

CPU

Memory

Power Supply

Bus

Peripherals

Disk

Controllers

Network

Power

Operator Error

User Error

DBA Error

System Administrator
Error

Sabotage

Fire

Flood

Earthquake

Power Failure

Chemical Spill

Bombing

System Failure | 257

As this figure shows, a variety of physical and logical layers must cooperate to deliver
an application. Some systems may involve fewer components; for example, a two-tier
client/server system would not have the additional application server components.

Failures in the components above the database can effectively prevent access to the
database even though the database itself may be available. The database server and
the database itself serve as the foundation for the stack. When a database fails, it
immediately affects the higher levels of the stack. If the failure results in lost or cor-
rupted data, the overall integrity of the application may be affected.

The potential threats to availability span all of the components involved in an appli-
cation system, but in this chapter we’ll examine only availability issues relating
specifically to the database.

System Failure
The abrupt failure of the server machine running the database is one of the most
common causes of unplanned downtime. A server may crash because of hardware
problems, such as the failure of a power supply, or because of software problems,
such as a process that begins to consume all the machine’s CPU resources. Even if
the underlying server platform is fine, the Oracle instance itself can fail. Whatever
the cause of the crash, the effect on Oracle is the same—the instance cannot deliver

Figure 11-2. Components of a system

Availability and
functionality

required at all
levels

Client

Middleware

Network Hardware
 and Software

Application

Application Server Hardware
and Operating System

Database

Database Server Hardware and Software

Operating Sites and Facilities

THE SYSTEM STACK

258 | Chapter 11: Oracle and High Availability

its promised functionality. Remember that when an Oracle database crashes, it is the
instance that crashes, not the database (as described in Chapter 2). Even if the sys-
tem fails, the failure will not imperil any data that’s already safely stored within the
disk files used by the Oracle database.

The impact of a crash will depend on the activity in progress at the time of the crash.
Any connected sessions will no longer have a server process to which to talk. All
active queries and transactions will be abruptly terminated. The process of cleaning
up the resulting mess is called instance recovery or crash recovery.

What Is Instance Recovery?
When you restart an Oracle instance after a failure, Oracle detects that a crash
occurred using information in the control file and the headers of the database files.
Oracle then performs instance recovery automatically and uses the online redo logs
to guarantee that the physical database is restored to a consistent state as it existed at
the time of the crash. This includes two actions:

• All committed transactions will be recovered.

• In-flight transactions will be rolled back or undone.

Note that an in-flight transaction might be one that a user didn’t commit or one that
was committed by the user but not confirmed by Oracle before the system failure. A
transaction isn’t considered committed until Oracle has written the relevant details

Telltale Error Messages
The following two error messages are often good indicators that an Oracle instance is
down:

ORA-03113: End-of-file on communication channel

This message is usually received by clients that try to resubmit an operation that failed
due to an instance failure. The message is somewhat cryptic but becomes clear if you
interpret it very literally. Oracle works using a pipe to communicate between the client
application and its associated server process in the Oracle instance. When the instance
fails, the client’s server process ceases to exist, so there is no one listening on the other
end of the pipe. The communication channel between the client and the server is no
longer valid.

ORA-01034: Oracle not available

This terse message means that when the client requested a connection to the Oracle
instance, the instance was not there. Clients that try to connect to a failed instance will
typically get this message. The client can connect to the Listener, but when the Listener
attempts to hand the client off to the requested Oracle instance, the ORA-01034 con-
dition results.

System Failure | 259

of the transaction to the current online redo log and has sent back a message to the
client application confirming the committed transaction.

Phases of Instance Recovery
Instance recovery has two phases: rollforward and rollback.

Recovering an instance requires the use of the redo logs, described in Chapter 2. The
redo logs contain a recording of all the physical changes made to the database as a
result of transactional activity, both committed and uncommitted.

The introduction of delayed redo log writes for committed transac-
tions as an option in Oracle Database 11g could create a scenario
where a transaction appears to have been committed but could still
not be recovered.

The checkpoint concept, also described in Chapter 2, is critical to understanding
crash recovery. When a transaction is committed, Oracle writes all associated data-
base block changes to the current online redo log. The actual database blocks may
have already been flushed to disk, or may be flushed at some later point. This means
that the online redo log can contain changes not yet reflected in the actual database
blocks stored in the datafiles. Oracle periodically ensures that the data blocks in the
datafiles on disk are synchronized with the redo log to reflect all the committed
changes up to a point in time. Oracle does this by writing all the database blocks
changed by those committed transactions to the datafiles on disk. This operation is
called a checkpoint. Completed checkpoints are recorded in the control file, datafile
headers, and redo log.

Rollforward

At any point in time, the online redo logs will be ahead of the datafiles by a certain
amount of time or number of committed transactions. Instance recovery closes this
gap and ensures that the datafiles reflect all committed transactions up to the time
the instance crashed. Oracle performs instance recovery by rolling forward through
the online redo log and replaying all the changes from the last completed checkpoint
to the time of instance failure. This operation is called the rollforward phase of
instance recovery.

While implementing rollforward recovery, Oracle reads the necessary database
blocks into the System Global Area and reproduces the changes that were originally
applied to the blocks. This process includes reproducing the undo or rollback infor-
mation, in addition to the data changes. Rollback segments are composed of extents
and data blocks just like tables, and all changes to rollback segment blocks are part
of the redo for a given transaction. For example, suppose that a user changed an
employee name from “John” to “Jonathan.” As Oracle applies the redo log, it will

260 | Chapter 11: Oracle and High Availability

read the block containing the employee row into the cache and redo the name
change. As part of recovering the transaction, Oracle will also write the old name
“John” to a rollback segment, as was done for the original transaction.

When the rollforward phase is finished, all the changes for committed and uncommit-
ted transactions have been reproduced. The uncommitted transactions are in-flight
once again, just as they were at the time the crash occurred. This leads to the next
logical phase of instance recovery—rollback. But before we discuss rollbacks them-
selves, we need to look at how Oracle uses checkpoints and how the timing of
checkpoints can affect recovery time.

Fast-start fault recovery and bounded recovery time

Checkpoints cause an increase in I/O since the database writer flushes all the data-
base blocks to disk to bring the datafiles up to the time of the checkpoint. Prior to
Oracle8, DBAs controlled checkpoint frequency by setting the initialization file
parameters LOG_CHECKPOINT_INTERVAL (number of redo blocks between
checkpoints) and LOG_CHECKPOINT_TIMEOUT (in seconds) and setting the size
of the redo log files. In addition, Oracle always performs a checkpoint whenever a
log file switch occurs.

Reducing the checkpoint interval or timeout would result in smaller amounts of data
between checkpoints and lead to faster recovery times, but could also introduce the
overhead of more frequent checkpoints and their associated disk activity. A com-
mon strategy for minimizing the number of checkpoints was to set the initialization
file parameters so that checkpoints would occur only with log switches.

Oracle8i introduced an initialization file parameter to provide a simpler and more
accurate way to control recovery times: FAST_START_IO_TARGET. The bulk of
recovery activity involves performing I/O for reading database blocks into the cache
so that redo can be applied to them. This parameter set a target ceiling on how many
database blocks Oracle would have to read in applying redo information. Oracle
would dynamically vary the checkpoint frequency in an attempt to limit the number
of blocks that will need to be read for recovery to the value of this parameter.

Oracle9i further sped this recovery process. Beginning at the last checkpoint, the
redo log was scanned for data blocks that contain unsaved changes and need to be
recovered. In the subsequent scan, changes are applied only where needed. Because
the subsequent scan is a sequential read and reading unnecessary blocks (random I/O)
is eliminated, the recovery time is reduced.

Oracle9i introduced an important fast-start time-based recovery feature. DBAs
specify a target for recovery time in seconds (in the FAST_START_MTTR_TARGET
initialization parameter, where MTTR stands for Mean Time to Recover) in order to
meet Service Level Agreements and other requirements. The database automatically

System Failure | 261

determines values for FAST_START_IO_TARGET and LOG_CHECKPOINT_
INTERVAL. Estimated MTTR values are calculated and placed in V$INSTANCE_
RECOVERY, thereby providing a means for real-world calibration and more accurate
estimates over time.

Today, this is all much simpler through Fast-Start Fault Recovery. The Oracle data-
base automatically bounds recovery time at startup using self-tuned checkpoint
processing, first introduced in Oracle Database 10g.

Rollback improvements

The rollforward phase re-creates uncommitted transactions and their associated
rollback information. These in-flight transactions must be rolled back to return to a
consistent state.

In Oracle releases prior to Version 7.3, the database wasn’t available until all uncom-
mitted transactions rolled back. Although a DBA could control the checkpoint fre-
quency and therefore control the time required for the rollforward phase of instance
recovery, the number of uncommitted transactions at the time of the crash varied tre-
mendously so the time needed for rollback could not really be accurately controlled
or predicted. In a busy OLTP system, there are typically a fair number of in-flight
transactions requiring rollback after a crash. This situation led to variable and unpre-
dictable times for crash recovery.

The solution to this problem, deferred rollback, was introduced in Oracle 7.3. Ora-
cle opens the database after the rollforward phase of recovery and performs the
rollback of uncommitted transactions in the background. This process reduces data-
base downtime and helps to reduce the variability of recovery times by deferring the
rollback phase.

But what if a user’s transaction begins working in a database block that contains
some changes left behind by an uncommitted transaction? If this happens, the user’s
transaction will trigger a foreground rollback to undo the changes and will then pro-
ceed when rollback is complete. This action is transparent to the user—he doesn’t
receive error messages or have to resubmit the transaction.

Oracle8i further optimized the deferred rollback process by limiting the rollback trig-
gered by a user transaction to the block in which the transaction is interested. For
example, suppose there is a large uncommitted transaction that affected 500 data-
base blocks. Prior to Oracle8i, the first user transaction that touched one of those
500 blocks would trigger a foreground rollback and absorb the overhead of rolling
back the entire transaction. Leveraging fast-start rollback, the user’s transaction
would roll back only the changes to the block in which it was interested. New trans-
actions would not have to wait for the complete rollback of large uncommitted
transactions.

262 | Chapter 11: Oracle and High Availability

Today, rollback management is made simpler by automated features in the data-
base. For example, as of Oracle Database 10g, automatic undo retention tuning
occurs controlling the amount of undo information held in rollbacks. The Redo Log-
file Size Advisor determines the optimal smallest redo logfile size based on the
FAST_START_MTTR_TARGET setting and database statistics gathered.

Protecting Against System Failure
There are a variety of approaches you can take to help protect your system against
the ill effects of system crashes and failures, including the following:

• Providing component redundancy

• Using Real Application Clusters

• Using Transparent Application Failover software services

Component Redundancy
As basic protection, the various hardware components that make up the database
server itself must be fault-tolerant. Fault-tolerance, as the name implies, allows the
overall hardware system to continue to operate even if one of its components fails.
This, in turn, implies redundant components and the ability to detect component
failure and seamlessly integrate the failed component’s replacement. The major sys-
tem components that should be fault-tolerant include the following:

• Disk drives

• Disk controllers

• CPUs

• Power supplies

• Cooling fans

• Network cards

• System buses

Disk failure is the largest area of exposure for hardware failure, since disks have the
shortest mean times to failure of any of the components in a computer system. Disks
also present the greatest variety of redundant solutions, so discussing that type of
failure in detail should provide the best example of how high availability can be
implemented with hardware.

Disk redundancy

Although the mean time to failure of an individual disk drive is very high, the ever-
increasing number of disks used for today’s very large databases results in more
frequent failures. Protection from disk failure is usually accomplished using RAID

Protecting Against System Failure | 263

(Redundant Array of Inexpensive Disks) technology. The use of redundant storage
has become common for systems of all sizes and types for two primary reasons: the
real threat of disk failure and the proliferation of packaged, relatively affordable
RAID solutions.

RAID technology uses one of two concepts to achieve redundancy:

Mirroring
The actual data is duplicated on another disk in the system.

Striping with parity
Data is striped on multiple disks, but instead of duplicating the data itself for
redundancy, a mathematical calculation termed parity is performed on the data
and the result is stored on another disk. You can think of parity as the sum of
the striped data. If one of the disks is lost, you can reconstruct the data on that
disk using the surviving disks and the parity data. The lost data represents the
only unknown variable in the equation and can be derived. You can conceptual-
ize this as a simple formula:

A + B + C + D = E

in which A–D are data striped across four disks and E is the parity data on a fifth
disk. If you lose any of the disks, you can solve the equation to identify the miss-
ing component. For example, if you lose the B drive you can solve the formula
as:

B = E – A – C – D

There are a number of different disk configurations or types of RAID technology,
which are formally termed levels. The basics of RAID technology were introduced in
Chapter 7, but Table 11-2 summarizes the most relevant levels of RAID in a bit more
detail, in terms of their cost, high availability, and the way Oracle uses each RAID
level.

 Which RAID Levels Should You Use with Oracle?
Some people say that you should never use RAID-5 for an Oracle database because of
the degraded write performance of this level of RAID. RAID-1 and RAID-0+1 offer bet-
ter performance, but at double the cost of disk storage. RAID-5 offers a cheaper and
reasonable solution, provided that you can meet performance requirements despite the
extra write overhead for maintaining parity data. Use these generic guidelines to help
determine the appropriate uses of different RAID levels:

• Use RAID-1 for redo log files.

• Use RAID-5 for database files, provided that the write overhead is acceptable
and adequate I/O is available.

• Use RAID-1 or RAID-0+1 for database files if RAID-5 write overhead is
unacceptable.

264 | Chapter 11: Oracle and High Availability

Table 11-2. RAID levels relevant to high availability

Level Disk configuration Cost Comments Oracle usage

0 Simple striping, no
redundancy

Same cost as unpro-
tected storage.

The term RAID-0 is used
to describe striping,
which increases read
and write throughput.
However, this is not
really RAID, as there is
no actual redundancy.

Striping simplifies administra-
tion for Oracle datafiles. Suitable
for all types of data for which
redundancy isn’t required.

1 Mirroring Twice the cost of
unprotected storage.

Same write perfor-
mance as a single disk.
Read performance may
improve through servic-
ing reads from both
copies.

Lack of striping adds complexity
of managing a larger number of
devices for Oracle. Often used for
redo logs, since the I/O for redo
is typically relatively small
sequential writes. Striped arrays
are more suited to large I/Os or
to multiple smaller, random I/Os.

0+1 Striping and mir-
roring

Twice the cost of
unprotected storage.

Best of both worlds—
striping increases read
and write performance
and mirroring for
redundancy avoids
“read-modify-write”
overhead of RAID-5.

Same usage as RAID-0, but
provides protection from disk
failure.

5 Striping with rotat-
ing or distributed
parity

Storage capacity is
reduced by 1/N,
where N is the num-
ber of disks in the
array. For example,
the storage is
reduced by 20%, or
1/5 of the total disk
storage, for a 5-disk
array.

Parity data is spread
across all disks, avoiding
the potential bottleneck
found in some other
types of RAID arrays.
Striping increases read
performance. Maintain-
ing parity data adds
additional I/O, decreas-
ing write performance.
For each write, the asso-
ciated parity data must
be read, modified, and
written back to disk. This
is referred to as the
“read-modify-write”
penalty.

Cost-effective solution for all Ora-
cle data except redo logs.
Degraded write performance
must be taken into account. Pop-
ular for reads where adequate I/O
is provided. Write penalties may
slow loads and index builds.
Often avoided for high-volume
OLTP due to write penalties.
Some storage vendors, such as
EMC, have proprietary solutions
(RAID-S) to minimize parity over-
head on writes.

Protecting Against System Failure | 265

Figure 11-3 illustrates the disk configurations for various RAID levels.

Automatic Storage Management
Oracle Database 10g and more recent database releases include Automatic Storage
Management (ASM). We introduced ASM in Chapter 5 and described its manage-
ability considerations. ASM enables you to create a pool of storage on disk groups
and then manages the placement of database files on the storage. ASM features
enable it to replace non-Oracle file systems and logical volume managers for files
managed by the Oracle database. An ASM instance manages each of the disks in the
disk group, and one ASM instance is provided for each database node in a RAC
environment.

ASM provides “Striping and Mirroring Everything” (SAME) for many types of disks,
including “Just a Bunch of Disks” (JBOD) arrays. You can specify groups of disks,
and designate a failure group to be used in the result of a disk failure. Mirroring can
also be set up on a per-file basis, and you can specify one or two mirrors. ASM
includes the ability to detect disk “hot spots” and redistribute data to avoid disk
bottlenecks, as well as the capability of adding disks to a disk group without any
interruption in service. DBAs add the disks to disk groups or remove disks from disk
groups using Oracle Enterprise Manager.

Figure 11-3. RAID levels commonly used with an Oracle database

DATA DATA

DATA DATA DATA DATA

D
PARITY

C
B

PARITY
A

D
C

A
B

PARITY
D

C
D

B
A

B
C

A
PARITY

RAID-O: Simple Striping, No Redundancy

RAID-1: Simple Mirroring

RAID-0+1: Striping and Mirroring

RAID-5: Striping with Distributed Parity

64 KB 64 KB 64 KB 64 KB 64 KB 64 KB 64 KB 64 KB

266 | Chapter 11: Oracle and High Availability

Stored data is automatically rebalanced when disks are added or removed. When a
drive fails, remirroring to remaining drives is automatic. These features make ASM
ideal for managing a database storage grid and allow you to use cheaper disk sys-
tems while obtaining higher levels of availability and performance.

Oracle Database 11g introduced a fast mirror resynchronization capability enabling
faster recovery from transient failures. ASM can now be set to only resynchronize
changed ASM disk extents for limited duration failures.

Simple Hardware Failover
Oracle recovers automatically from a system crash. The automatic recovery protects
data integrity, critical in a relational database, but also results in downtime as the
database recovers from a crash. When a hardware failure occurs, the ability to
quickly detect a system crash and initiate recovery is crucial to minimizing the associ-
ated downtime.

When an individual server fails, the instance running on that node fails as well.
Depending on the cause, the failed node may not return to service quickly or be
noticed immediately. Either way, companies that wish to protect their systems from
the failure of a node typically employ a cluster of machines to achieve simple hard-
ware failover. Failover is the ability of a surviving node in a cluster to assume the
responsibilities of a failed node. Although failover doesn’t directly address the issue
of the reliability of the underlying hardware, automated failover can reduce the
downtime from hardware failure.

The concept is very simple: a combination of software and hardware “watches” over
the cluster. Typically, this monitoring is done by regularly checking a heartbeat,
which is a message sent between machines in the cluster. If Machine A fails, Machine
B will detect the failure through the loss of the heartbeat and will execute scripts to
take over control of the disks, assume Machine A’s network address, and restart the
processes that failed with Machine A. From an Oracle database perspective, the
entire set of events is identical to an instance crash followed by an instance recovery.
The instance uses the control files, redo log files, and database files to perform crash
recovery. The fact that the instance is now running on another machine is irrele-
vant—the various Oracle files on disk are the key.

Most failover solutions include software that runs on the machine to monitor spe-
cific processes, such as the background processes of the Oracle instance. If the pri-
mary node itself has not failed but some process has, the monitoring software will
detect the failure of the process and take some action based on scripts set up by the
system administrator. For example, if the Oracle instance fails, the monitoring soft-
ware may attempt to restart the Oracle instance three times. If all three attempts are
unsuccessful, the software may initiate physical hardware failover, transferring con-
trol to the alternate node in the cluster.

Figures 11-4 and 11-5 illustrate the process of implementing a simple failover.

Protecting Against System Failure | 267

Figure 11-4. Before failover

Figure 11-5. After failover

Oracle Instance

Primary
Server

Heartbeat Alternative
Server

Oracle Database

Oracle Instance

Heartbeat

Alternative
Server

Oracle Database

Primary
Server

268 | Chapter 11: Oracle and High Availability

Outage duration for hardware failover

The time for failover to take effect, and therefore the length of the associated data-
base downtime, depends on the following intervals:

Time for the alternate node to detect the failure of the primary node
The alternate node monitors the primary node using a heartbeat mechanism.
The frequency of this check is usually configurable—for example, every 30 sec-
onds—providing control over the maximum time that a primary-node failure
will go undetected.

Time for the alternate node to execute various startup actions
The time needed for such actions (e.g., assuming control of the disks used to
store the Oracle database) may vary by system and should be determined
through testing. One important consideration is the time required for a filesys-
tem check. The larger the database, the larger the number of filesystems that
may have been used. When the alternate node assumes control of the disks, it
must check the state of the various filesystems on the disks.

Time for Oracle crash recovery
As we mentioned, you can effectively control this time period using checkpoints.
Oracle provides a simple way to control recovery times using the initialization
parameter FAST_START_IO_TARGET or the more recently introduced FAST_
START_MTTR_TARGET parameter.

When the instance fails, users will typically receive some type of error message and
will typically attempt to log in again. Application developers can deal with this
sequence of failover events with generic or specific error handling in their applica-
tions, or they can use the Transparent Application Failover functionality described
later in this chapter.

Failover and operating system platform

This type of failover capability has been available for many years. On Unix-based
platforms, vendors typically offer a simple failover solution that includes two
machines, a private network between them to monitor the heartbeat, shared disk,
and cluster software. No additional software is required from Oracle.

On Windows, Oracle includes Fail Safe, software that provides a GUI interface for
configuring the Oracle database for hardware failover that leverages Microsoft’s
Cluster Server. The mechanics of the failover are the same—a GUI is provided for
administrative convenience. (In recent releases, the Fail Safe Manager and Real
Applications Cluster Guard Manager have merged.)

Real Application Clusters
Oracle introduced Oracle Parallel Server (OPS), the predecessor to Real Application
Clusters, in 1989 on Digital Equipment Corporation’s VAX clusters running the

Protecting Against System Failure | 269

VMS operating system, and on Unix in 1993. OPS clusters were often deployed to
assure a highly available database. Real Application Clusters followed, in Oracle9i,
and was first made generally available in 2001.

At first glance, Real Application Clusters (RAC) may look similar to the clustered
solutions described earlier in the “Simple Hardware Failover” section. Both failover
and Real Application Clusters involve clustered hardware with access to disks from
multiple nodes. The key difference is that with simple hardware failover only one
node is an active instance. With RAC, the Oracle database is spread across multiple
nodes and each node has an active Oracle instance. Clients can connect to any of the
instances to access the same database.

Because each Oracle instance runs on its own node, if a node fails, the instance on
that node also fails. The overall Oracle database remains available since surviving
instances are still running on other working nodes.

Figure 11-6 illustrates Real Application Clusters on a cluster.

Real Application Clusters and hardware failover

The Real Application Clusters option can typically provide higher levels of availability
than simple hardware failover. This option can also provide additional flexibility for
scaling database applications across multiple machines, and manageability was simpli-
fied as of Oracle Database 10g when Enterprise Manager Grid Control was introduced.

Figure 11-6. Oracle Real Application Clusters on a cluster

Oracle Instance

Database
Server

Oracle Instance

Database
ServerInterconnect

Oracle Database

270 | Chapter 11: Oracle and High Availability

Real Application Clusters increases availability by enabling avoidance of complete
database blackouts. With simple hardware failover, the database is completely
unavailable until node failover, instance startup, and crash recovery are complete.
With RAC, clients can connect to a surviving instance any time. Clients may be able
to continue working with no interruption, depending on whether the data they need
to work on was under the control of the failed instance. You can think of the failure
of a Real Application Clusters instance as a potential database “brownout,” as
opposed to the guaranteed blackout caused by hardware failover.

Some other key differences between hardware failover and Real Application Clusters
include the following:

• The Real Application Clusters option avoids the various activities involved in
disk takeover: mounting volumes, validating filesystem integrity, opening Ora-
cle database files, and so on. Not performing these activities can significantly
reduce the time required to achieve full system availability.

• The Real Application Clusters option doesn’t require the creation and mainte-
nance of the complex scripts typically used to control the activities for hardware
failover. For example, there is no need to script which disk volumes will be taken
over by a surviving node. The automatic nature of Real Application Clusters avoids
the complex initial system administration to set up the failover environment, as well
as the ongoing administration needed as additional disk volumes are used. In fact,
adding disk volumes to your database but forgetting to add the volumes to the vari-
ous failover scripts can cause a hardware failover solution to fail itself!

In a simple two-way cluster used for hardware failover, both machines should have
equal processing power and should be sized so that each can handle the entire work-
load. This equivalence is clearly required since only one node of the cluster is used at
any point for the entire workload. If one node fails, the other should be capable of
running the same workload with equal performance.

With Real Application Clusters, you can use both nodes of the cluster concurrently
to spread the workload, reducing the load on one machine or node. You must still
make sure that each machine will be powerful enough to adequately handle the
entire workload (albeit at a reduced performance level) to meet basic business
requirements when a node is not available.

Of course, using Real Application Clusters to spread the workload over several
machines will result in a lower percentage of each machine’s resources being used in
normal operating conditions, typically more expensive than using fully utilized
machines. Each machine in the cluster must devote some overhead to maintaining its
role in the cluster, although this overhead is minimal. You will have to weigh the
benefits of carrying on with some performance degradation in the event of a node
failure versus the cost of buying more nodes or more powerful machines. The econom-
ics of your situation may dictate that a decrease in performance in the event of a node
failure is more palatable than a larger initial outlay for more nodes or larger systems.

Protecting Against System Failure | 271

Much of the complexity of tuning and programming for scalability has been removed
since Oracle9i. Deployment was simplified in Oracle Database 10g when integrated
clusterware was first introduced. Interested readers can find more details about Real
Application Clusters scalability in the Oracle documentation and in Chapter 9 of this
book.

Node failure and Real Application Clusters

The database instances provide protection for each other—if an instance fails, one of
the surviving instances will detect the failure and automatically initiate RAC recov-
ery. This type of recovery is different from the hardware failover discussed
previously. No actual “failover” occurs—no disk takeover is required, since all nodes
already have access to the disks used for the database. There is no need to start an
Oracle instance on the surviving node or nodes, since Oracle is already running on
all the nodes. The Oracle software performs the necessary actions without using
scripts; the required steps are an integral part of Real Application Clusters software.

The phases of Real Application Clusters recovery are the following:

Cluster reorganization
When an instance failure occurs, Real Application Clusters must first determine
which nodes of the cluster remain in service. Oracle9i introduced a disk-based
heartbeat in which each database group member votes on what members are
part of the current group. Based on arbitration, a correct current group configu-
ration is established. The time required for this operation is very brief.

Lock database rebuild
The lock database, which contains the information used to coordinate Real
Application Clusters traffic, is distributed across the multiple active instances.
Therefore, a portion of that information is lost when a node fails. The remaining
nodes have sufficient redundant data to reconstruct the lost information. Once
the cluster membership is determined, the surviving instances reconstruct the
lock database. The time for this phase depends on how many locks must be
recovered, as well as whether the rebuild process involves a single surviving node
or multiple surviving nodes. Oracle speeds the lock remastering process by
allowing optimization of lock master locations in the background while users are
accessing the system. In a two-node cluster, node failure leaves a single surviv-
ing node that acts as a dictator and processes the lock operations very quickly.

Instance recovery
Once the lock database is rebuilt, the redo logs from the failed instance perform
crash recovery. This is similar to single-instance crash recovery—a rollforward
phase followed by a nonblocking, deferred rollback phase. The key difference is
that the recovery isn’t performed by restarting a failed instance. Rather, it’s per-
formed by the instance that detected the failure.

272 | Chapter 11: Oracle and High Availability

While Real Application Clusters recovery is in progress, clients connected to surviv-
ing instances remain connected and can continue working. In some cases users may
experience a slight delay in response times, but their sessions aren’t terminated. Cli-
ents connected to the failed instance can reconnect to a surviving instance and can
resume working. Uncommitted transactions will be rolled back and will have to be
resubmitted. Queries that were active will also have been terminated; however,
Transparent Application Failover (TAF) can be used to automatically continue query
processing on a surviving node without requiring users to resubmit their queries.
You can also use TAF to resubmit transactions without user intervention.

Parallel Fail Safe/RACGuard

Oracle Parallel Fail Safe was renamed RACGuard in Oracle9i and integrated into the
core RAC product in Oracle Database 10g. Prior to Oracle Database 10g, it was a
feature in Real Application Clusters that leveraged the clustering software from sys-
tems vendors. As of Oracle Database 10g, the database includes a cluster filesystem.

RACGuard supported such features as:

• Automated, fast, and bounded recovery times from Oracle instance crashes

• Automatic capture of diagnostic data

• Guaranteed primary and secondary configuration

• Support for features such as Transparent Application Failover (described in the
next section)

• Client preconnection to secondary instances to speed reconnection

Oracle Transparent Application Failover
Oracle introduced the Transparent Application Failover (TAF) capability in the first
release of Oracle8. As the name implies, TAF provides a seamless migration of users’
sessions from one Oracle instance to another. You can use TAF to mask the failure of
an instance for transparent high availability or to migrate users from an active
instance to a less active one. Figure 11-7 illustrates TAF with Real Application
Clusters.

As shown in this figure, TAF can automatically reconnect clients to another instance
of the database, which provides access to the same database as the original instance.
The high-availability benefits of TAF include the following:

Transparent reconnection
Clients don’t have to manually reconnect to a surviving instance. You can opti-
mally reconfigure TAF to preconnect clients to an alternate instance in addition
to their primary instance when they log on. Preconnecting clients to an alternate
instance removes the overhead of establishing a new connection when automatic

Protecting Against System Failure | 273

failover takes place. For systems with a large number of connected clients, this
preconnection avoids the overhead and delays caused by flooding the alternate
instance with a large number of simultaneous connection requests.

Automatic resubmission of queries
TAF can automatically resubmit queries that were active at the time the first
instance failed and can resume sending results back to the client. Oracle will
reexecute the query as of the time the original query started. Oracle’s read con-
sistency will therefore provide the correct answer regardless of any activity since
the query began. However, when the user requests the “next” row from a query,
Oracle will have to process through all rows from the start of the query until the
requested row, which may result in a performance lag.

Callback functions
Oracle8i enhanced TAF by enabling the application developer to register a “call-
back function” with TAF. Once TAF has successfully reconnected the client to
the alternate instance, the registered function will be called automatically. The
application developer can use the callback function to reinitialize various aspects
of session state as desired.

Failover-aware applications
Application developers can leverage TAF by writing “failover-aware” applica-
tions that resubmit transactions that were lost when the client’s primary instance
failed, further reducing the impact of failure. Note that unlike query resubmis-
sion, TAF itself doesn’t automatically resubmit the transactions that were in-flight.
Rather, it provides a framework for a seamless failover that can be leveraged by
application developers.

Figure 11-7. Failover with TAF and Real Application Clusters

• Client automatically reconnects to surviving instance
• TAF can resubmit queries automatically
• Applications can be made failover-aware and can resubmit transactions

Before Failure After Failure

Oracle
 Instance

Oracle
 Instance

Oracle
 Instance

Oracle DatabaseOracle Database

274 | Chapter 11: Oracle and High Availability

How TAF works

TAF is implemented in the Oracle Call Interface (OCI) layer, a low-level API for
establishing and managing Oracle database connections. When the instance to
which a client is connected fails, the client’s server process ceases to exist. The OCI
layer in the client can detect the absence of a server process on the other end of the
channel and automatically establish a new connection to another instance. The
alternate instance to which TAF reconnects users is specified in the Oracle Net con-
figuration files, which are described in the Oracle Net documentation.

Because OCI is a low-level API, writing programs with OCI requires more effort and
sophistication on the part of the developer. Fortunately, Oracle uses OCI to write cli-
ent tools and various drivers, so that applications using these tools can leverage TAF.
Support for TAF in ODBC and JDBC drivers is especially useful; it means that TAF
can be leveraged by any client application that uses these drivers to connect to Ora-
cle. For example, TAF can provide automatic reconnection for a third-party query
tool that uses ODBC. To implement TAF with ODBC, set up an ODBC data source
that uses an Oracle Net service name that is configured to use TAF in the Oracle Net
configuration files. ODBC uses Oracle Net and can therefore leverage the TAF
feature.

TAF and various Oracle configurations

Although the TAF-Real Application Clusters combination is the most obvious com-
bination for high availability, TAF can be used with a single Oracle instance or with
multiple databases, each accessible from a single instance. Some possible configura-
tions are as follows:

• TAF can automatically reconnect clients back to their original instances for cases
in which the instance failed but the node did not. An automated monitoring sys-
tem, such as Oracle Enterprise Manager, can detect instance failure quickly and
restart the instance. The fast-start recovery features in Oracle enable very low
crash recovery times. Users that aren’t performing heads-down data entry work
can be automatically reconnected by TAF and might never be aware that their
instance failed and was restarted.

• In simple clusters, TAF can reconnect users to the instance started by simple
hardware failover on the surviving node of a cluster. The reconnection cannot
occur until the alternate node has started Oracle and has performed crash
recovery.

• When there are two distinct databases, each with a single instance, TAF can
reconnect clients to an instance that provides access to a different database run-
ning in another data center. This clearly requires replication of the relevant data
between the two databases. Oracle fortunately provides automated support for
data replication, which is covered in the later section entitled “Complete Site
Failure.”

Recovering from Failures | 275

Recovering from Failures
Despite the prevalence of redundant or protected disk storage, media failures can
and do occur. In cases in which one or more Oracle datafiles are lost due to disk fail-
ure, you must use database backups to recover the lost data.

There are times when simple human or machine error can also lead to the loss of
data, just as a media failure can. For example, an administrator may accidentally
delete a datafile, or an I/O subsystem may malfunction, corrupting data on the disks.
The key to being prepared to handle these types of failures is implementing a good
backup-and-recovery strategy and understanding the power of Oracle’s newer fea-
tures such as Flashback.

Developing a Backup-and-Recovery Strategy
Proper development, documentation, and testing of your backup-and-recovery strat-
egy is one of the most important activities in implementing an Oracle database. You
must test every phase of the backup-and-recovery process to ensure that the entire
process works, because once a disaster hits, the complete recovery process must
work flawlessly.

Some companies test the backup procedure but fail to actually test recovery using the
backups taken. Only when a failure requires the use of the backups do companies
discover that the backups in place were unusable for some reason. It’s critical to test
the entire cycle from backup through restore and recovery.

Taking Oracle Backups
Two basic types of backups are available with Oracle:

Hot backup
The datafiles for one or more tablespaces are backed up while the database is
active.

Cold backup
The database is shut down and all the datafiles, redo log files, and control files
are backed up.

With a hot backup, not all of the datafiles must be backed up at once. For instance,
you may want to back up a different group of datafiles each night. You must be sure
to keep backups of the archived redo logs that date back to your oldest backed-up
datafile, since you’ll need them if you have to implement rollforward recovery from
the time of that oldest datafile backup.

Some DBAs with very large databases back up the various datafiles over several runs.
Some DBAs back up the datafiles that contain data subject to frequent changes more
frequently (for example, daily), and back up datafiles containing more static data less

276 | Chapter 11: Oracle and High Availability

often (for example, weekly). There are commands to back up the control file as well;
this should be done after all the datafiles have been backed up.

If the database isn’t archiving redo logs (this is known as running in NOAR-
CHIVELOG mode and is described in Chapter 2), you can take only complete cold
backups. If the database is archiving redo logs, it can be backed up while running.

Regardless of backup type, you should also back up the INIT.ORA or SPFILE file
and password files—these are key files for the operation of your Oracle database.
While not required, you should also back up the various scripts used to create and
further develop the database. These scripts represent an important part of the docu-
mentation of the structure and evolution of the database.

For more information about the different types of backups and variations on these
types, please refer to your Oracle documentation as well as the third-party books
listed in Appendix B.

Using Backups to Recover
Two basic types of recovery are possible with Oracle, based on whether or you are
archiving the redo logs:

Complete database recovery
If the database did not archive redo logs, only a complete cold backup is possi-
ble. Correspondingly, only a complete database recovery can be performed. You
restore the database files, redo logs, and control files from the backup. The data-
base is essentially restored as of the time of the backup. All work done since the
time of the backup is lost and a complete recovery must be performed even if only
one of the datafiles is damaged. The potential for lost work, coupled with the need
to restore the entire database to correct partial failure, are reasons most shops avoid
this situation by running their databases in ARCHIVELOG mode. Figure 11-8 illus-
trates backup and recovery for a database without archived redo logs.

Partial or targeted restore and rollforward recovery
When you’re running the Oracle database in ARCHIVELOG mode, you can
restore only the damaged datafile(s) and can apply redo log information from the
time the backup was taken to the point of failure. The archived and online redo
logs reproduce all the changes to the restored datafiles to bring them up to the
same point in time as the rest of the database. This procedure minimizes the
time for the restore and recovery operations. Partial recovery like this can be
done with the database down. Alternatively, the affected tablespace(s) can be
placed offline and recovery can be performed with the rest of the database avail-
able. Oracle9i improved the granularity of the recovery process by also enabling
restore and recovery of individual data blocks instead of providing restore and
recovery only of entire datafiles. Figure 11-9 illustrates backup and recovery with
archived redo logs.

Recovering from Failures | 277

Obviously, the redo logs are extremely important. Oracle first enabled analysis of
these files through the LogMiner tool in Oracle8i. Since Oracle9i, the LogMiner is
accessible through an Oracle Enterprise Manager GUI, and it provides log analysis
for all datatypes. If the redo log has become corrupted, the LogMiner can now read
past corrupted records as desired in order to analyze the impact on transactions after
the corruption.

Figure 11-8. Database backup and recovery without archived redo logs

Figure 11-9. Database backup and recovery with archived redo logs

Control
Files

Datafiles Online
Redo Logs

1 Full Cold Backup

TIME

T T + 10

2 Disk failure

3

WITHOUT ARCHIVING - The work from T to T+10 is lost

 Complete
Restore to
Time = T

WITH ARCHIVING - Minimized restore, no work lost

1 Hot Backup

T T + 10

2 Disk Failure

TIME

Control
Files

Datafiles

4 Replay Changes from Logs

3 Restore Only
Damaged Datafiles

TIME

Archived Redo Logs Online Redo Logs

T T + 10

278 | Chapter 11: Oracle and High Availability

Recovery Manager
Recovery Manager (RMAN), first available with Oracle8, provides server-managed
online backup and recovery. RMAN does the following:

• Backs up one or more datafiles to disk or tape

• Backs up archived redo logs to disk or tape

• Restores datafiles from disk or tape

• Restores and applies archived redo logs to perform recovery

• Automatically parallelizes both the reading and writing of the various Oracle
files being backed up

RMAN performs the backup operations and updates a catalog (stored in an Oracle
database) with the details of what backups were taken and where they were stored.
You can query this catalog for critical information, such as datafiles that have not
been backed up or datafiles whose backups have been invalidated through
NOLOGGING operations performed on objects contained in those datafiles.

RMAN also uses the catalog to perform incremental backups. RMAN will back up
only database blocks that have changed since the last backup. When RMAN backs
up only the individual changed blocks in the database, the overall backup and recov-
ery time can be significantly reduced for databases in which a small percentage of the
data in large tables changes. Since Oracle Database 10g, RMAN can apply incremen-
tal backups to an image backup of the database. Improvements in methods used by
RMAN in recent Oracle releases have greatly enhanced performance for incremental
backups.

RMAN reads and writes Oracle blocks, not operating system blocks. While RMAN
is backing up a datafile, Oracle blocks can be written to it, but RMAN will read and
write in consistent Oracle blocks, not operating system blocks within an Oracle
block.

The following list summarizes the RMAN capabilities that enable high availability:

• Automated channel failover during backup and restore

• Automated failover to a previous backup during restore when the current
backup is missing or corrupt

• Automated new database and temporary file creation during recovery

• Automated recovery to a previous point in time

• Block media recovery while the datafile is online

• Block change tracking for fast incremental backups

• Merged incremental backups

• Backup and restore of required files only

Recovering from Failures | 279

• Retention policy ensuring that relevant backups are available

• Resumable backup and restore if operations failed

• Automatic backup of the control file and server parameter file

Since Oracle Database 10g, RMAN is also used to support automated disk-based
backup. Disk-based strategies have an advantage over tape: they enable random
access to any data such that only changes need be backed up or recovered. RMAN
can be set up to run a backup job to disk at a specific time. RMAN manages the dele-
tion of backup files that are no longer necessary. In combination with ASM, RMAN
will write all backups, archive logs, control file autobackups, and datafile copies to a
designated disk group. The single storage location is referred to as the Flash Recov-
ery Area.

More recently, Oracle introduced the Information Lifecycle Management (ILM)
Assistant for managing online data and allocating data to appropriate tiers of disk
performance. In Oracle Database 11g, the Flashback data archive feature has been
added to ILM, enabling the storing and tracking of all transactional changes to a
record. This feature, available through Oracle’s Total Recall Option, allows you to
gain access to previous database records.

Read-Only Tablespaces
Oracle 7.3 introduced read-only tablespaces. Using the ALTER TABLESPACE com-
mand in SQL, you can mark a tablespace as read-only. No changes are possible to
the objects stored in a read-only tablespace. You can toggle a tablespace between
read/write and read-only states as you wish.

Once a tablespace is in read-only mode, it can be backed up once and doesn’t have
to be backed up again, since its contents cannot change unless it’s placed in read/
write mode. Marking a tablespace as read-only allows entire sections of a database to
be marked read-only, backed up once, and excluded from regular backups thereafter.

If a datafile of a read-only tablespace is damaged, you can restore it directly from the
backup without any recovery. Because no changes were made to the datafiles, no
redo log information needs to be applied. For databases with significant static or his-
torical data, this option can significantly simplify and streamline backup and restore
operations.

Read-only tablespaces, combined with Oracle’s ability to partition a table on a range
or list of column values (for example, a date) provide powerful support for the roll-
ing windows common to data warehouses (described in Chapter 10). Once a new
month’s data is loaded, indexed, and so on, the relevant tablespaces can be marked
read-only and backed up once, removing the tablespaces datafile(s) from the cycle of
ongoing backup and significantly reducing the time required for those backup
operations.

280 | Chapter 11: Oracle and High Availability

Point-in-Time Recovery
Oracle 7.3 introduced point-in-time recovery (PITR) for the entire database. Point-
in-time recovery allows a DBA to restore the datafiles for the database and apply
redo information up to a specific time or System Change Number (SCN). This lim-
ited type of recovery is useful for cases in which an error occurred—for example, if a
table was dropped accidentally or a large number of rows were deleted incorrectly.
The DBA can restore the database to the point in time just prior to the event to undo
the results of the mistake.

A difficulty with database-level point-in-time recovery is that the entire database has
to be restored. In response to this limitation, Oracle8 introduced point-in-time recov-
ery at the tablespace level within the database. Point-in-time recovery based on a
tablespace allows a DBA to restore and recover a specific tablespace or set of
tablespaces to a particular point in time. Only the tablespace(s) containing the
desired objects need to be recovered. This has been a very useful improvement given
the ever-increasing size of today’s databases.

However, this tablespace feature needs to be used carefully, since objects in one
tablespace may have dependencies, such as referential integrity constraints, on
objects in other tablespaces. For example, suppose that Tablespace1 contains the
EMP table and Tablespace2 contains the DEPT table, and a foreign key constraint
links these two tables together for referential integrity. If you were to recover
Tablespace2 to an earlier point than Tablespace1, you might find that you had rows
in the EMP table that contained an invalid foreign key value, since the matching pri-
mary key entry in the DEPT table had not been rolled forward to the place where the
primary key value to which the EMP table refers had been added. The newer Flash-
back capability (described in the next section), particularly the Flashback Table
feature, now provides an easier-to-use alternative for table recovery.

Flashback
Oracle9i introduced a recovery approach called Flashback, which was designed to
help in recovering from user errors. Flashback Query was the first example of this
feature made available by Oracle. The concept behind a Flashback Query is simple.
You can execute a query against the database as of a particular time or System
Change Number (SCN). Oracle delivers the result set as it would have appeared if
the query were run at that time, using the undo log information segments to recon-
struct the data, which can then be used to correct the results of the errant action.

Oracle Database 10g added a much wider range of flashback capabilities, including:

Flashback Versions Query
Returns all the versions of rows in a particular query over a span of time.

Flashback Transaction Query
Returns all the changes made by a specific transaction.

Complete Site Failure | 281

Flashback Drop
When an object is dropped, it is placed in a Recycle Bin, so a user can simply un-
drop the object to restore it.

Flashback Table
Returns a table to a specific point in time.

Flashback Database
Returns the entire database to a particular point in time. Can be used instead of
point-in-time recovery in some situations.

Flashback Restore Points
Enables canceling of planned database changes using user-defined labels (instead
of SCNs or timestamps). Can also be used with Data Guard and RMAN to
resynchronize a clone database.

Oracle Database 11g adds a Flashback Transaction command for backing out an
individual transaction and its dependent transactions by utilizing undo data to revert
data to its original state.

As we noted earlier in this chapter, Oracle now provides a Flashback Data Archive
capability through the Oracle Database 11g Total Recall Option. This data archive is
established for a defined retention period. Update and delete operations are then
recorded in tables that map to the database tables being tracked. If you have speci-
fied an “AS OF” clause in your SQL specifying a particular moment it time, you will
then have access to the data as it appeared at that moment. The updates and deletes
are rolled back, as appropriate, and show you what the data looked like at the speci-
fied point in time.

Complete Site Failure
Protection from the complete failure of your primary Oracle site poses significant
challenges. Your organization must carefully evaluate the risks to its primary site.
These risks include physical and environmental problems as well as hardware risks.
For example, is the data center in an area prone to floods, tornadoes, or earthquakes?
Are power failures a frequent occurrence? Earlier versions of this book treated events
such as “a terrorist attack or an airplane crash into the data center” as remote possibil-
ities, but, unfortunately, these scenarios no longer seem so implausible.

Protection from primary site failure involves monitoring of and redundancy controls
for the following:

• Data center power supply

• Data center climate control facilities

• Database server redundancy

• Database redundancy

• Data redundancy

282 | Chapter 11: Oracle and High Availability

The first three items on the list are aimed at preventing the failure of the data center.
Data server redundancy, through simple hardware failover or Real Application Clus-
ters, provides protection from node failure within a data center but not from
complete data center loss.

Should the data center fail completely, the last two items—database redundancy and
data redundancy—provide for disaster recovery.

Oracle Data Guard: Standby Database for Redundancy
Oracle’s physical standby database functionality was introduced in Oracle 7.3 to pro-
vide database redundancy. In Oracle9i, this concept was extended to include support
for a logical standby database. The enhanced feature set is called Oracle Data Guard.

The concept of a physical standby database is simple—keep a copy of the database
files at a second location, ship the redo logs to the second site as they are filled, and
apply them to the copy of the database. This process keeps the standby database “a
few steps” behind the primary database. If the primary site fails, the standby data-
base is opened and becomes the production database. The potential data loss is
limited to the transactions in any redo logs that have not been shipped to the standby
site. Figure 11-10 illustrates the standby database feature.

The physical standby database can be used to offload reporting, such as end-of-day
reports, from the primary server to the standby server. The ability to offload report-
ing requests provides flexibility for reporting and queries and can help performance
on the primary server while making use of the standby server.

Emerging Technologies: Clusters Across a Distance
Some vendors are now offering clustering solutions that allow the nodes of the cluster
to be separated by enough distance to allow one node to survive the failure of the data
center that contains the other node. In fact, it is anticipated that many grid computing
deployments will occur this way in the future. The clustering of nodes separated by a
few kilometers is becoming possible using sophisticated interconnect technologies that
can function over greater distances. The disks are mirrored with a copy at each site to
allow each site to function in the event of a complete failure of the other site.

These solutions are intriguing because they can provide data server redundancy and
data center redundancy in a single solution. If one node (or the data center containing
it) fails, the node in the other data center provides failover.

A simpler approach often used in data warehousing is to create duplicate grid imple-
mentations at primary and secondary sites. Extraction scripts from the source systems
load both data warehouses simultaneously. If one of the target sites fails, ETL remains
queued such that the failed system can be updated once it is recovered.

Complete Site Failure | 283

When the standby database was being used for reporting, archived redo information
from the primary site could not be applied prior to Oracle Database 10g. Recovery
could only continue when the standby database was closed again. This factor had
important implications for the time it took to recover from an outage with the
standby database. Oracle Database 10g introduced a real-time apply, enabling redo
data to be applied at the standby as soon as it was received.

The physical standby database is still more useful as of Oracle Database 11g since by
deploying the Active Data Guard Option you can query the standby database while
the redo apply is active. The implication of all of these enhancements is that you can
use your disaster recovery database to handle some of your query workload, as a site
for database backups, and as a site to test database changes.

Logical standby database

Oracle Data Guard also offers a logical standby database capability. With this capa-
bility, the standard Oracle archive logs are transformed into SQL transactions, and
these are applied to an open standby database. The logical standby database is differ-
ent physically from the primary standby database and can be used for different tasks.
For example, the primary database might be indexed for transaction processing while
the standby database might be indexed for data warehousing. Although physically
different from the primary database, the secondary database is logically the same and
can take over processing in case the primary fails. As archive logs are shipped from
the primary to the secondary, undo records in the shipped archive log can be com-
pared to the logical standby undo records to guard against potential corruption. As
of Oracle Database 10g, you can instantiate the logical standby database without
quiescing the primary.

Figure 11-10. Standby database

• Production database is copied
 to the standby system

• Standby system is started in
 standby recovery mode

• As archived redo logs are
 generated on the production
 systems, they are transferred to
 the standby system and applied

• If the production system fails,
 the standby system is activated

Production
System

(New York)

Standby
System
(London)

Database Database
Copy

Archived
Redo Logs

Oracle
Instance

Oracle
Instance

284 | Chapter 11: Oracle and High Availability

Oracle Data Guard management

The Oracle Data Guard broker provides monitoring and control for physical and log-
ical standby databases and components. A single command can be used to perform
failover. Oracle Enterprise Manager provides a Data Guard Manager GUI for setting
up, monitoring, and managing the standby database. SQL*Plus also provides an
interface for Data Guard SQL statements and initialization parameters as of Oracle
Database 11g.

The Oracle Database 10g Data Guard broker added support for creating and manag-
ing configurations containing RAC primary and standby databases. The Data Guard
broker now leverages the Cluster Ready Services.

Possible Causes of Lost Data with a Physical Standby Database
There is a possibility that you will lose data, even if you use a physical standby data-
base. There are three possible causes of lost data in the event of primary site failure:

• Archived redo logs have not been shipped to the standby site.

• Filled online redo logs have not been archived yet.

• The current online redo log is not a candidate for archiving until a log switch
occurs.

These three potential problems are addressed in different ways, as described in the
following sections.

Copying archived redo logs to a standby site

Prior to Oracle8i, copying of archived redo logs from the primary to the standby site
was not automated. You were free to use any method to copy the files across the net-
work. For example, you could schedule a batch job that copies archived logs to the
standby site every N minutes. If the primary site fails, these copies would limit the
lost redo information (and therefore the lost data) to a maximum of N minutes of
work plus whatever was in the currently active log.

Oracle8i first provided support for the archiving of redo logs to a destination on the
primary server as well as on multiple remote servers. This feature automates the
copying and application of the archived redo logs to one or more standby sites. The
lost data is then limited to the contents of any filled redo logs that have not been
completely archived, as well as the current online redo log. Oracle also automati-
cally applies the archived redo logs to the standby database as they arrive.

Oracle9i added the option to specify zero data loss to a standby machine. In this
mode, all changes to a local log file are written synchronously to a remote log file.
This mode guarantees that switching over to the standby database will not result in
any lost data. As you might guess, this mode may impact performance, as each log
write must also be completed to a remote log file. Oracle provides an option that will

Data Redundancy Solutions | 285

wait to write to a remote log only for a specified period of time, so that a network
failure will not bring database processing to a halt.

If some data loss is allowable within certain limits, Oracle Database 11g enables a
fast-start failover to occur provided that redo loss exposure does not exceed the lim-
its the administrator sets. As noted earlier, a physical standby database is also more
useful as of Oracle Database 11g since it is now possible to query the standby while
redo apply is active.

Unarchived redo information and the role of geo-mirroring

If you require primary site failure not to result in the loss of any committed transac-
tions, and do not choose to use the zero data loss option of Data Guard, the solution
is to mirror all redo log and control file activity from the primary site to the standby
site.

You can provide this level of reliability by using a remote mirroring technology
sometimes known as geo-mirroring. Essentially, all writes to the online redo log files
and the control files at the primary site must be mirrored synchronously to the
standby site. For simplicity, you can also geo-mirror the archived log destination,
which will duplicate the archived logs at the remote site, in effect copying the
archived redo logs from the primary to the standby site. This approach can simplify
operations; you use one solution for all the mirroring requirements, as opposed to
having Oracle copy the archived logs and having geo-mirroring handle the other crit-
ical files.

Geo-mirroring of the online redo logs results in every committed transaction being
written to both the online redo log at the primary site and the copy of the online redo
log at the standby site. This process adds some time to each transaction for the mir-
rored write to reach the standby site. Depending on the distance between the sites
and the network used, geo-mirroring can hamper performance, so you should test its
impact on the normal operation of your database.

Geo-mirroring provides the most complete protection against primary site failure
and, accordingly, it is a relatively expensive solution. You will need to weigh the cost
of the sophisticated disk subsystems and high-speed telecommunication lines needed
for nonintrusive geo-mirroring against the cost of losing the data in any unarchived
redo logs and the current online redo log. See Appendix B for where to find more
information about geo-mirroring.

Data Redundancy Solutions
Redundant data is another option for dealing with primary site failure. Implementing
a redundant data approach differs from using a standby database, which duplicates
the entire primary database. Data redundancy is achieved by having a copy of
your critical data in an entirely separate Oracle database with a different structure.

286 | Chapter 11: Oracle and High Availability

The data, not the database itself, is redundant. If the primary site fails, users can con-
tinue working using the redundant data in the secondary database.

Oracle provides automated synchronous and asynchronous data-replication features
to support data redundancy. For simplicity, in the following sections we’ll examine
replication using a simple two-site example—a primary and a secondary. Oracle can,
however, perform N-way or multimaster replication involving more than two sites
with all sites replicating to all others.

Data Replication—Synchronous and Asynchronous
Whenever you have a data replication scenario, you always have a primary site, from
which the replication originates, and a secondary site, which is the recipient of the
data replication. (In a multimaster scenario, you can have more than one master site,
and a single machine can be a master for one replication plan and a secondary site
for another.) When you design your replication plan, you must consider the degree
to which data at the secondary site can differ for a period of time from the data at the
primary site. This difference is referred to as data divergence. When you implement
replication, Oracle generates triggers on all specified tables. These triggers are fired
as part of the primary site transactions. The triggers either update the secondary
site’s data as part of the same transaction (synchronous replication) or place an entry
in a deferred transaction queue that will be used later to update the secondary site
(asynchronous replication).

Oracle’s replication capabilities are delivered today in the Oracle Streams product.
Streams includes log-based replication and Advanced Queues and is covered in more
detail in Chapter 13.

Key considerations in setting up a replication environment include the following:

Tolerance for data divergence
The smaller the data divergence, the more individual replication actions will
have to be performed. You will reduce the resources needed to implement the
replication by increasing the data divergence.

Performance requirements
Since replication requires resources, it can have an impact on performance.
However, since Oracle Database 10g, Oracle Streams can capture change data
from log files, which greatly reduces the performance impact of replication on an
active database.

Network bandwidth
Since replication uses network bandwidth, you have to consider the availability
of this resource.

Distance between sites
The more distance between sites, the longer the physical transfer of data will
take and the longer each application will take.

Data Redundancy Solutions | 287

Site and network stability
If a site or a network goes down, all replications that use that network or are des-
tined for that site will not be received. When either of these resources comes
back online, the stored replication traffic can have an impact on the amount of
time it takes to recover the site.

Experience level of your database administrators
Even the most effective replication plan can be undone by DBAs who aren’t
familiar with replication.

Figure 11-11 illustrates synchronous and asynchronous replication.

Synchronous, or real-time, replication can be used when there is no tolerance for
data divergence or lost data. The data at the secondary site must match the primary
site at all times and reflect all committed transactions. Each transaction at the pri-
mary site will fire triggers that call procedures at the secondary site to reproduce the
transaction. Synchronous replication uses distributed transactions that will add
overhead to every transaction at the primary site. Whether this additional overhead is
acceptable will clearly depend on your specific requirements. Synchronous replication
introduces system interdependencies—the secondary site and the network connecting
the sites must be up or the primary site will not be able to perform transactions.

You can also use asynchronous, or deferred, replication to provide redundant data.
With asynchronous replication, transactions are performed at the primary site and
replicated some time later to the secondary site. Until the deferred transaction queue
is “pushed” to the secondary site, replicating the changes, the data at the secondary

Figure 11-11. Oracle replication for redundant data

TABLE X

Secondary Database

TABLE X
Deferred

Transaction Queue
Place in Queue

TABLE X

Secondary Database

AsynchronousTransaction

TIME

Primary Database

Transaction

TABLE X

Primary Database

Synchronous
1 2

Replication

4 3

1 2

4 3

Replication

288 | Chapter 11: Oracle and High Availability

site will differ from the primary site data. If the primary database is irrevocably lost,
any unpushed transactions in the deferred queue will also be lost.

The extent of the data divergence and potential data loss resulting from the diver-
gence is a very important consideration in configuring asynchronous replication. In
addition, asynchronous replication allows the primary site to function when the net-
work or the secondary site is down, while synchronous replication requires that the
secondary site be available. Asynchronous replication adds overhead to transactions
at the primary site, so once again, you’ll need to carefully consider throughput
requirements and perform appropriate testing. Typically, asynchronous replication
adds less overhead than synchronous replication, since the replication of changes can
be efficiently batched to the secondary site. However, asynchronous replication will
still add some overhead to the operation of the primary site, so you should consider
and test the effect of both types of replication on your database environment.

Old-Fashioned Data Redundancy
You can also achieve data redundancy using Oracle’s standard utilities. Historically,
one of the most common backup methods for Oracle was simply to export the con-
tents of the database into a file using the Oracle Export utility. This file could then be
shipped in binary form to any platform Oracle supports and subsequently imported
into another database with Oracle’s Import utility. This approach can still provide a
simple form of data redundancy if the amount of data is manageable.

Oracle 7.3 introduced a direct path export feature that runs about 70 percent faster
than a traditional export. The direct path export avoids some of the overhead of a
normal export by directly accessing the data in the Oracle datafiles. Oracle Database
10g and newer database releases provide a much higher speed export/import than in
the earlier Oracle version. This latest version, often called the Data Pump, is about
60 percent faster for export and 15 to 20 times faster for import per stream.

Another export option is to unload data from the desired tables into simple flat files
by spooling the output of a SELECT statement to an operating system file. You can
then ship the flat file to the secondary site and use Oracle’s SQL*Loader utility to
load the data into duplicate tables in the secondary database. For cases in which a
significant amount of data is input to the primary system using loads, such as in a
data warehouse, a viable disaster-recovery plan is simply to back up the load files to
a secondary site on which they will wait, ready for reloading to either the primary or
secondary site, should a disaster occur.

While these methods may seem relatively crude, they can provide simple data redun-
dancy for targeted sets of data. Transportable tablespaces can also be used to move
entire tablespaces to a backup platform. Transportable tablespaces in Oracle Data-
base 10g and newer releases let you transport tablespaces from one type of system to
another, increasing their flexibility for implementing redundancy, moving large
amounts of data, and migrating to another database platform.

Rolling Upgrades | 289

Rolling Upgrades
Thus far, we have focused on preventing unplanned downtime. But much of the
availability planning in the past included defining planned downtime for system
maintenance operations. Today, such downtime has largely disappeared with Ora-
cle’s extensive online management capabilities. For example, Oracle provides online
reorganization capabilities in recent releases, a task that often required extensive
planning in the past.

The one remaining area that posed an availability challenge until recently is the need
to perform upgrades. Today, where RAC configurations leverage ASM, rolling
upgrades (introduced in Oracle Database 10g Release 2) are entirely feasible with no
downtime. Among the tasks that can be accomplished are system and hardware
upgrades, operating system upgrades, patching, and storage migration.

Other Oracle features can minimize downtime for non-RAC or ASM configurations.
Data Guard can be used to minimize downtime for system, database, and patch set
upgrades. Transportable tablespaces and Oracle Streams are useful in speeding data-
base upgrades and platform migrations.

Export/Import, Standby Database, or Replication?
All the choices we’ve discussed in this chapter offer you some type of protection
against losing critical data—or your entire database. But which one is right for your
needs?

To quote the standard answer to so many technical questions, “it depends.” Export/
import, whether in its original form or in the Oracle Data Pump, provides a simple and
proven method, but the time lag involved with this method typically leaves larger time
periods where data is lost in the event of a failure. Transportable tablespaces can pro-
vide the same functionality with better performance, but are less granular. A physical
standby database typically leaves smaller data gaps or, in the case since introduction of
Oracle9i zero-data loss, no data gap; however, this solution does require the expense
of redundant hardware. More recent database releases somewhat mitigate this as the
standby database can be used for queries. Streams replication also requires redundant
hardware and ensures consistent and complete data on both the primary and backup
server, but this solution is the most resource-intensive of the three.

You should carefully balance the cost, both in extra hardware and performance, of
each of these solutions, and balance them against the potential cost of a database or
server failure. Of course, any one of these solutions is infinitely more valuable than not
implementing any of them and simply hoping that a disaster never happens to you.

290

Chapter 12CHAPTER 12

Oracle and Hardware Architecture 12

In Chapter 2, we discussed the architecture of the Oracle database, and in Chapter 7,
we described how Oracle uses hardware resources. How hardware architectures are
chosen and deployed can ultimately determine the specific scalability, performance
tuning, management, and reliability options available to you. In fact, systems are
sometimes badly configured without consideration of the proper balance of CPUs,
memory, and I/O for projected workloads. This can limit options for database tun-
ing if performance later becomes an issue.

Over the years, Oracle has developed new features to address specific platforms and,
with Oracle Database 11g, continues this process by building on a commitment to
grid computing and information appliance-like configurations. This chapter dis-
cusses the various hardware architectures to provide a basis for understanding how
Oracle leverages each of these. It covers the following types of hardware systems and
how Oracle takes advantage of the features inherent in each of the platforms:

• Uniprocessors (including multicores)

• Symmetric Multiprocessing (SMP) systems

• Clusters

• Non-Uniform Memory Access (NUMA) systems

• Grid computing

We’ll also discuss the use of different disk technologies and how to choose the hard-
ware system that’s most appropriate for your purposes.

System Basics
Any discussion of hardware systems begins with a review of the components that
make up a hardware platform and the impact these components have on the overall
system. You’ll find the same essential components under the covers of any computer
system:

System Basics | 291

• One or more CPUs, which execute the basic instructions that make up com-
puter programs, possibly with multiple cores to provide added processing power

• Memory, storing recently accessed instructions and data

• An input/output (I/O) system, that typically consists of some combination of
disk storage, device controllers for pulling data and programs off physical media,
and network controllers for connecting the system to other systems on the
network

The number of each of these components and the capabilities of the individual com-
ponents themselves determine the ultimate cost and scalability of a system. A
machine with four processors is typically more expensive and capable of doing more
work than a single-processor machine; new versions of components, such as CPUs,
are typically faster and often less expensive than older versions.

Online transaction processing (OLTP) systems are most often designed for through-
put. In business intelligence or data warehousing systems, it is often assumed that
CPU and memory are the performance-limiting components. However, CPU pro-
cessing power and memory capacity constraints have greatly risen in recent years
(especially in the time period since we wrote earlier editions of this book), and pro-
viding adequate I/O now deserves special attention for these systems as well.

Each system component has a time to access and transport data, or a latency cost.
The latency cost of a component is the amount of latency the use of that compo-
nent introduces into the system; in other words, how much slower each successive
level of a component is than its previous level (e.g., Level 2 versus Level 1; see
Table 12-1). Each component also has limited capacity.

The CPU and the Level 1 (L1) memory cache on the CPU have the lowest latency, as
shown in Table 12-1, but also the least capacity. Disk has the most capacity but the
highest latency.

There are several different types of memory: an L1 cache, which is on
the CPU chip; an L2 (Level 2) cache on the CPU surface, an L3 cache
on the same board as the CPU; and main memory, which is the
remaining memory on the system accessible through the memory bus.

Table 12-1. Typical sizes and latencies of system components

Element Typical storage capability Typical latency

CPU None None

L1 cache (on CPU) 10s to 100s of KBs 10 nanoseconds

L2 cache (on CPU surface) Single MBs 40–60 nanoseconds

L3 cache (on same board) 10s of MBs 120 nanoseconds

Main memory MBs to TB+ 1,000 - 10,000 nanoseconds

Disk GBs to hundreds TBs 1-10 million nanoseconds

292 | Chapter 12: Oracle and Hardware Architecture

An important part of tuning any Oracle database involves reducing the need to read
data from sources with the greatest latency (e.g., disk) and, when a disk must be
accessed, ensuring that there are as few bottlenecks as possible in the I/O subsystem.
As the Oracle database accesses a greater percentage of its data from memory rather
than disk, the overall latency of the system is correspondingly decreased and perfor-
mance increases. For more information about tuning concepts, see Chapter 7.

Uniprocessor Systems
Uniprocessor systems, such as the one shown in Figure 12-1, are the simplest sys-
tems in terms of architecture. Each of these systems (typically a standard personal
computer) contains a single CPU and a single I/O channel and is made entirely with
industry-standard components. They are most often used as single-user machines
(for example, for database development or providing browser access over a net-
work). Some uniprocessor machines are also used as small servers for databases,
especially where multicore processors are installed.

Until the 1990s, uniprocessor systems were frequently used as servers because of
their low price and the limited ability of relational databases to fully utilize other
types of systems. However, Oracle evolved to take advantage of systems containing
multiple CPUs through improved parallelism and more sophisticated optimization.
At the same time, the price points of Symmetric Multiprocessing systems (described
in the next section) have plummeted dramatically, making SMP systems the data-
base hardware servers of choice.

Figure 12-1. Typical uniprocessor system

Disk

CPU with L1 Cache

L2 Cache

Memory

I/O

Symmetric Multiprocessing Systems | 293

Even in a uniprocessor system, the server operating systems used by these systems
support multiple threads. The multicore processors are becoming common to further
enable simultaneous processing of multiple tasks. Multicore processors are inte-
grated circuits that contain two or more processors. Hardware platform vendors are
racing to provide more cores to differentiate their platforms.

Each thread in a server operating system can be used to support a concurrent
process, which can execute in parallel. By default, the PARALLEL_THREADS_PER_
CPU parameter in the initialization file is set at 2 for most platforms on which Oracle
runs. Oracle can further determine the degree of parallelism based on parameters set
in the initialization file or using the adaptive degree of parallelism feature, described
in Chapter 7. This adaptive multiuser feature makes use of algorithms that take into
account the number of threads. Additional tuning parameters can also affect parallel-
ism, although the need for tuning of such parameters is much diminished in recent
Oracle releases.

Symmetric Multiprocessing Systems
One of the early limiting factors for a uniprocessor system was the ultimate speed of
its processor—all applications have to share this one resource. Symmetric Multipro-
cessing (SMP) systems were invented in an effort to overcome this limitation by
adding CPUs to the memory bus, as shown in Figure 12-2.

Figure 12-2. Typical Symmetric Multiprocessing (SMP) system

Disk

Memory

I/O

CPU with L1 Cache

L2 Cache

CPU with L1 Cache

L2 Cache

294 | Chapter 12: Oracle and Hardware Architecture

Each CPU has its own memory cache. Data resident in the cache of one CPU is
sometimes needed for processing by a second CPU. Because of this potential sharing
of data, the CPUs for such machines must be able to “snoop” the memory bus to
determine where copies of data reside and whether the data is being updated. This
snooping is managed transparently by the operating system that controls the SMP
system. Oracle Standard Edition One, Standard Edition, or Enterprise Edition can be
used on these platforms. (Oracle limits the number of CPUs you can deploy using
Standard Edition One and Standard Edition while placing no limit on the number of
CPUs for Enterprise Edition.)

SMP platforms have been available since the 1980s as midrange platforms, primarily
as Unix-based machines. Today, there is a category of entry-level servers featuring
mostly 64-bit CPUs (replacing previous-generation 32-bit CPUs). The most popular
operating systems in this category are Windows variations and Linux.

SMP servers that can scale to larger sizes from platform vendors such as HP, IBM,
and Sun feature variations on this basic design. For example, SMP systems might
include multicore CPUs, a larger L2 cache, faster memory bus and/or multiple
higher-speed I/O channels. Each enhancement is intended to remove potential
bottlenecks that can limit performance. Unix and Linux are the most common
operating systems used in Oracle implementations on high-end SMP servers.

The number of CPUs possible in a SMP system is limited by scalability of the system
(memory) bus. As more CPUs are added to the bus, the bus itself can become satu-
rated with traffic between CPUs attached to the bus.

Systems featuring 64-bit CPUs can handle large amounts of data more efficiently
than previous 32-bit CPUs; they support dozens of CPUs on a single system with
hundreds of gigabytes of memory.

Of course, the database must have parallelization features to take full advantage of the
SMP architecture. Oracle operations such as query execution and other DML activity
and data loading can run as parallel processes within the Oracle server, allowing Ora-
cle to take advantage of the benefits of multiprocessor systems. Oracle, like all soft-
ware systems, benefits from parallel operations, as shown by “Amdahl’s Law.”

Total execution time = (parallel part / number of processors) + serial part

Amdahl’s Law, formulated by mainframe pioneer Gene Amdahl in 1967 to describe
performance in mixed parallel and serial workloads, clearly shows that moving an
operation from the serial portion of execution to a parallel portion provides the per-
formance increases expected with the use of multiple processors. In the same way,
the more serial operations that make up an application, the longer the execution time
will be because the sum of the execution time of all serial operations can offset any
performance gains realized from the use of multiple processors. In other words, you
cannot speed up a serial operation or a sequence of serial operations by adding more
processors.

Clusters | 295

Each subsequent release of Oracle has added more parallelized features to speed up
the execution of queries as well as the tuning and maintenance of the database. For
an extensive list of Oracle operations that can be parallelized, see the section “What
Can Be Parallelized?” in Chapter 7.

Oracle’s parallel operations take advantage of available CPU resources. If you’re
working with a system on which the CPU resources are already being completely
consumed, this parallelism will not help improve performance; in fact, it could even
hurt performance by adding the increased demands for CPU power required to man-
age the parallel processes. Oracle’s adaptive degree of parallelism automatically can
reduce the degree of parallelism for an operation to prevent this situation.

Clusters
Clustered systems have provided a highly available and highly scalable solution since
initially appearing in the 1980s in the DEC VAXcluster configuration. Clusters can
combine all the components of separate machines, including CPUs, memory, and I/O
subsystems, into a single hardware entity. However, clusters are typically built by
using shared disks linked to multiple “nodes” (computer systems). A high-speed inter-
connect between systems provides a means of exchanging data and instructions
without writing to disk (see Figure 12-3). Each system runs its own copy of an oper-
ating system and Oracle instance. Grids, described later in this chapter, are typically
made up of a few very large clusters.

Figure 12-3. Typical cluster (two systems shown)

Network Connection

Disk Cabling

CPU with L1 Cache

L2 Cache

Memory

I/O

Disk

CPU with L1 Cache

L2 Cache

Memory

I/O

Disk

296 | Chapter 12: Oracle and Hardware Architecture

Oracle’s support for clusters dates back to the VAXcluster. Oracle provided a sophis-
ticated locking model so that the multiple nodes could access the shared data on the
disks. Clusters require such a locking model because each machine in the cluster
must be aware of the data locks held by other, physically separate machines in the
cluster.

Today, that Oracle solution has evolved into Real Application Clusters (RAC)
(replacing the Oracle Parallel Server (OPS) that was available prior to Oracle9i). RAC
is most frequently used for Windows, Linux, or Unix-based clusters. Oracle pro-
vides an integrated lock manager that mediates between different servers, or nodes,
that seek to update data in the same block.

RAC introduced full support of Cache Fusion, where locks are maintained in mem-
ory without frequent writing to disk. Cache Fusion is different from the standard
locking mechanisms that are described in Chapter 8, in that it applies to blocks of
data, rather than rows. The mediation is necessary since two different nodes might
try to access different rows in the same physical block, which is the smallest amount
of data that can be used by Oracle.

Cache Fusion initially greatly increased performance for read/write operations com-
pared to the previous OPS and later added improved performance for write/write
operations in Oracle9i RAC. Today, Oracle supports Sockets Direct Protocol (SDP)
and asynchronous I/O protocols, lighter-weight transports than those used in previ-
ous traditional TCP/IP based RAC implementations. More recent database releases
further improved performance by leveraging faster interconnects such as Infiniband
networks through support of Reliable Datagram Sockets (RDS). For example, Infini-
band node-to-node latency is about a tenth of the latency in Gigabit Ethernet
(typically about 70-80 microseconds).

Prior to Real Application Clusters, you would configure clusters to deliver higher
throughput or greater availability for the system. In the high-availability scenario, if a
single node fails, a secondary node attached to the shared disk can get access to the
same data. Queries can run to completion without further intervention through
transparent client failover. RAC provides both availability and scalability since each
node in a cluster can act as a failover node for all the other nodes in the cluster.

Real Application Clusters are increasingly used in Windows and Linux environments
where a single platform cannot scale adequately or as an alternative to higher-cost
Unix high-end solutions. Clustered solutions might also be deployed where high
availability is desired. On Windows clustered platforms, Oracle Fail Safe might be
chosen as an alternative to RAC, although data is not shared by the two systems and
the second system provides only standby access to this data. Because concurrent
access isn’t provided, the Fail Safe solution doesn’t offer the scalability that Real
Application Clusters can provide.

Clusters | 297

In earlier editions of this book, we described a very high-end variation of clusters
known as a massively parallel processing (MPP) system. Such systems were essen-
tially a cluster in a box with nodes connected via very high-speed and proprietary
networks (see Figure 12-4). Open-systems vendors now rarely sell such platforms
since clusters of lower-cost system components (nodes) have displaced them in the
broader marketplace.

Figure 12-4. Massively parallel processing (MPP) system

Node 1

CPUCPU

L2L2

Memory

I/O

Disk

Node 3

CPUCPU

L2L2

Memory

I/O

Disk

Node 2

CPUCPU

L2L2

Memory

I/O

Disk

Node 4

CPUCPU

L2L2

Memory

I/O

Disk

High-Speed Interconnects

Typical MPP Switch

High-Speed Interconnects

298 | Chapter 12: Oracle and Hardware Architecture

Non-Uniform Memory Access Systems
Non-Uniform Memory Access (NUMA) computers, introduced in the mid-1990s,
provide even greater throughput than SMP by linking multiple SMP components via
distributed memory, as shown in Figure 12-5. Like clusters, these systems provide
scaling of memory and I/O subsystems in addition to CPUs. A key difference is the
single operating system copy that manages the entire platform and a directory-based
cache coherency scheme to keep data synchronized. Memory access between nodes
is in the hundreds of microseconds, which is much faster than going to disk in clus-
tered configurations, and only slightly less swift than local memory bus speeds in a
single SMP system. Memory capacities can range into multiple terabytes.

Figure 12-5. Non-Uniform Memory Access (NUMA) configuration

Memory Bus Links

Typical NUMA Node

Memory Bus Link

CPUCPU

L2

Memory

I/O

Disk

CPUCPU

L2

Memory

I/O

Disk

CPUCPU

L2

Memory

I/O

Disk

CPUCPU

L2

Memory

I/O

Disk

Grid Computing | 299

This enables NUMA to have some major advantages over cluster solutions:

• Parallel versions of applications don’t need to be developed or certified to run on
these machines (though additional performance gains may be realized when
such applications can be tuned for NUMA).

• Management is much simpler on NUMA systems than on clusters because there
is only one copy of the operating system to manage and only one database
instance is typically deployed.

Today, the Hewlett Packard Superdome is an example of a NUMA system with dem-
onstrated scalability in production databases that scale into dozens of terabytes of
data. Since this platform behaves like, and is managed the same as, SMP systems,
NUMA and SMP systems have similar tradeoffs (although NUMA systems tend to be
higher priced).

Grid Computing
The “g” in Oracle’s database nomenclature since Oracle Database 10g signifies the
company’s focus on enabling grid computing. Grids are simply pools of computers
that provide needed resources for applications on an as-needed basis. The goal is to
provide computing resources that transparently scale to the user community, much
as an electrical utility company can deliver power to meet peak demand by accessing
energy from other power providers’ plants via a power grid. Computing grids enable
this dynamic provisioning of CPU and data resources (shown in Figure 12-6). The
Oracle database with RAC forms the foundation for the provisioning of these
resources.

Figure 12-6. Sample grid configuration, including computer blades and cluster

Grid Users, Grid Controls

Application Servers/Blades

Database Servers/Blades

Network Attached Storage

Network interconnects

300 | Chapter 12: Oracle and Hardware Architecture

Oracle Database 10g introduced several important features that enable the delivery
of resources when needed via a grid:

Dynamic Service Provisioning
This feature automatically allocates and reallocates server resources based on
configuration and failover rules. Service requests are automatically routed to the
server with the least load. If a server fails, the surviving services are automati-
cally reallocated to the available servers.

Web services
Web services are also an inherent part of the grid landscape, because applica-
tions running on the grid want to use the same type of transparent access to
components (or services) that users have to applications. Database web services
provide support for queries, messaging, and DML, can access Java and PL/SQL,
and can provide full XML support.

Rolling upgrades
A rolling upgrade allows you to bring down some of the nodes in the grid,
upgrade their software, and then bring them back online as part of the grid. You
can then repeat this procedure with the other nodes. The end result is that you
can achieve a complete upgrade of your Oracle database software without hav-
ing to bring down the database.

Automatic Storage Management
The ASM system also enables management of large numbers of nodes by imple-
menting automatic data rebalancing across disks, as well as easy addition of new
disks to the overall pool of storage.

Enterprise Manager Grid Control
Enterprise Manager Grid Control manages a grid infrastructure from a central
location, including RAC databases, storage, Oracle Application Servers/Fusion
Middleware, and network services.

Oracle Database 11g includes multitier service management and improvements to
ASM including support for rolling upgrades, automatic bad block detection and
repair, and fast mirror resynchronization. The Automatic Database Diagnostics
Monitor (ADDM) for RAC determines the most globally significant performance
issues for a multi-instance database, including the global cache interconnect, lock
manager congestion, global resource contention (such as I/O), high-load SQL across
the instances, and skew in instance response times. Hot database patching can now
be applied to any Oracle database, including RAC implementations.

Disk and Storage Technology
The discussion of hardware architectures and performance in this chapter so far has
centered on ways of increasing performance by increasing available system resources
such as CPUs, memory, and I/O subsystems and on the parallelism that can take

Disk and Storage Technology | 301

advantage of these resources. An important way to increase hardware performance is
to tune for I/O, which includes spreading data across disks and providing an ade-
quate number of access paths to the data. As a rule of thumb, your I/O should
deliver 1 GB per second of throughput for every 4 CPUs with a minimum of 2 GB per
second delivered. Since disk access has the greatest latency, another focus of I/O tun-
ing is keeping data retrieved from disk in memory.

Oracle refers to proper configurations—those that feature proper I/O (especially
spindles that provide access paths to storage), memory, and CPUs—as balanced con-
figurations. As noted previously, Oracle Database 10g and later releases now include
ASM for disk, greatly simplifying day-to-day management for storage. However,
working with hardware vendors in order to get proper storage configurations has
sometimes proven difficult, especially for data warehousing. Also, as disk capacities
have grown, improvements in access times have not kept pace. This has led Oracle to
develop reference configurations with several key hardware platform and storage
vendors to help provide more accurate initial sizing through an Information Appli-
ance Initiative.

The Oracle Optimized Warehouse Initiative is a series of Oracle-based
data warehousing reference configurations, with key platform and
storage providers such as HP, IBM, Sun, and EMC/Dell. Several of
Oracle’s platform partners have also announced Oracle Optimized
Warehouses that are pretested hardware configurations with prein-
stalled Oracle databases. The reference configurations include a
variety of node, system, and storage configurations offering a variety of
upgrade paths. As a starting point, you should understand the
complexity of queries in the workload, the amount of data, and the
number of concurrent users. Oracle and its partners continue to
update these configurations as hardware platforms are improved. For
more information, search on “Optimized Warehouse” on Oracle’s
main web site.

Disk Deployment Strategies
Disks are often directly attached to systems—more expensive systems offer faster
disk controllers and I/O. As network bandwidth has improved, Network Attached
Storage (NAS) and Storage Area Networks (SAN) have appeared as cost-effective
alternatives. Disks are also configured in a variety of ways for redundancy, eliminat-
ing the possibility of single points of disk failure resulting in loss of access to data.

Disk is commonly deployed in arrays, the industry standard being RAID (Redun-
dant Array of Inexpensive/Independent Disks). You can use RAID as a part of any of
the configurations we’ve discussed to provide higher performance and reliability.
RAID disk arrays were introduced in this book in Chapter 7 and discussed in the
context of their use in high-availability scenarios in Chapter 11. Please refer to those
chapters for more information about RAID disk arrays. In addition, since Oracle

302 | Chapter 12: Oracle and Hardware Architecture

Database 10g, Automatic Storage Management (ASM) delivers much of the function-
ality of a RAID array, such as striping and mirroring, with a collection of commodity
disks. ASM is further described in Chapter 5.

Oracle9i introduced table compression in the database as a means of decreasing disk
storage requirements primarily in data warehousing. Duplicate values in a data block
are eliminated because values that are duplicated are stored in a symbol table at the
beginning of the block, and all additional occurrences are replaced with a short
reference to the symbol table. Oracle Database 11g also features an Advanced
Compression Option for insert, update, and delete operations important in OLTP
operations. Data compression of 50 percent is commonly observed today. In addi-
tion to reducing disk storage, compressed data can also be advantageous for
performance when it fits entirely into cache (instead of requiring disk access).

Since storage capacities are growing and disk is available at lower cost points, many
organizations are now storing all relevant data online in disk storage for data ware-
housing and business intelligence implementations. Given that disks delivering the
best performance are typically more expensive and of lower capacity, many now
deploy such disks in combination with higher capacity but lower performing (and
cheaper) disk for less frequently accessed data. Information Lifecycle Management
(ILM) in the Oracle database, particularly the ILM Assistant, first available in 2007,
provide the capability to manage such an environment.

Which Platform Deployment Solution?
In a world in which there was no limit to the amount of money you could spend on
hardware, you could make a simple decision about the most appropriate hardware:
simply choose the level of throughput and reliability you need, and go buy it! Unfor-
tunately, we have yet to discover the location of this kind of world, so your choice of
a hardware solution will often be a compromise. But since this book was first writ-
ten, relative price points have continued to collapse making this selection much
easier.

Platform Comparison
The most commonly implemented hardware platform for an Oracle server is the
SMP system, which strikes a nice balance between power and price. SMP systems are
popular for the following reasons:

• SMP systems offer more and simpler scalability options for the future than uni-
processor systems.

• 64-bit processors and operating systems with large memory support enable SMP
systems to handle the needs of very large databases (even containing dozens of
terabytes of data).

Which Platform Deployment Solution? | 303

• SMP systems have a single operating system and a single Oracle instance to man-
age and maintain, unlike clusters.

• More applications are certified to run on SMP systems than clusters.

• SMP systems can be less expensive than NUMA, clusters, or grid configurations
in similar CPU configurations because memory and I/O subsystems are not
duplicated to the same degree

This is not to say that other configurations should not be considered. Certainly, if
scalability demands exceed the capabilities of SMP machines, clusters or a grid may
provide the only viable solution. Clusters can prove cheaper through use of
“commodity” nodes in RAC configurations. With careful planning and an enterprise-
computing management style, such configurations do provide powerful and highly
available solutions.

Today, one of the key tradeoffs in determining the type of system to
deploy is the cost associated with deploying multicore CPUs versus
CPUs consisting of single cores. This analysis extends beyond simply
hardware costs since database vendors have adopted new pricing mod-
els to take this technology into account. Oracle’s pricing policy has
changed in reaction to accepted industry practices in this regard.
Many organizations purchase CPU-based licenses of Oracle based on
the number of CPUs in their platforms. However, where multicore
CPUs are deployed, the incremental Oracle license price is not at a 1:1
ratio with the number of additional cores. This is because platform
vendors and Oracle Corporation recognize there is overhead associ-
ated with multicore technology, so Oracle license prices increase incre-
mentally based on expected performance gains. Of course,
technologies and industry pricing practices often change more fre-
quently than major database releases, and that is one of the reasons
why we don’t dwell on pricing in this book. To figure out current
tradeoffs, you will likely need the help of both your platform provider
and Oracle.

Table 12-2 provides a comparison of the relative strengths of the different deploy-
ment platforms for scalability, manageability, and availability.

Table 12-2. Relative strengths of deployment platforms

Ranking Scalability Manageability Availability

Best Grid

Cluster

Uniprocessor

SMP

Grid

Cluster

Worst
SMP

Uniprocessor

Grid

Cluster

SMP

Uniprocessor

304 | Chapter 12: Oracle and Hardware Architecture

You should select a storage technology based on your performance and recovery
requirements and budget. In general, more expensive solutions offer better
performance and more flexible availability options. Be sure to consider throughput
requirements as you choose storage.

Approaches to Choosing Platforms
When selecting a solution for deployment, most organizations choose systems that
will meet anticipated performance and scalability needs for the near future, taking
into account management and availability requirements. However, there are two
additional approaches to be considered.

First is the truism with which we’re all familiar—the longer you wait, the cheaper
computer hardware (and related components) get. According to Moore’s Law, cred-
ited by Intel to Gordon Moore in 1965 (and proven many times over since then),
each chip will double in computing power every 18–24 months, each time providing
huge leaps in performance. Today, such performance increases are driven by
increased clock speeds and the introduction of more cores in the processors.

This continual reduction in price and increase in performance characteristics is an
ongoing fact of life in the computer hardware industry. But how can you use this fact
in planning deployment strategies for your organizational system architecture?

Buy what you need, when you need it, and plan for the obsolescence of hardware by
recycling it into the organization when it no longer meets the needs of an individual
application. For instance, today’s departmental server may turn into tomorrow’s web
server. With grid deployment, you might continue to leverage older hardware as part
of the existing computing solution.

Second, remember to consider the effect of hardware upgrades, particularly CPU
upgrades, in nongrid solutions. SMP systems and nodes require that all CPUs be
identical within them, so if you upgrade one you will have to upgrade all of them. At
some point the vendor will recommend a new system anyway because other internal
features (e.g., memory and I/O bus technologies) will have improved, partly to
match the increased capabilities of the new CPUs.

The grid is tempting to consider since new machine types can be added to the grid as
they become available. Oracle’s self-tuning and advanced management capabilities
available in Oracle Database 10g and further improved in Oracle Database 11g make
grid computing more practical by eliminating difficult manual tuning efforts that for-
merly needed to take into account variations in systems.

305

Chapter 13 CHAPTER 13

Oracle Distributed Databases and
Distributed Data13

Data in large and mid-sized companies can be spread over many different databases.
The data can be on different servers running different operating systems or even
different database management systems. The data needed to answer any specific
business question may need to be accessed from more than one server. A user may
need to access this separate data on several servers simultaneously, or the data
required for an answer may need to be moved to a local server. Inserts, updates, or
deletions of data across these distributed servers may also be necessary.

There are two basic ways to deal with data in distributed databases: as part of a sin-
gle distributed entity in which the distributed architecture is transparent, or by using
a variety of replication techniques to create copies of the data in more than one loca-
tion. This chapter examines both of these options and the technologies associated
with each solution.

Accessing Multiple Databases As a Single Entity
Users sometimes need to query or manipulate data that resides in multiple Oracle
databases or in a mixture of Oracle and non-Oracle databases. This section describes
a number of techniques and architectures you can use to interact with data in a dis-
tributed environment.

Distributed Data Access Across Multiple Oracle Databases
For many years, Oracle has offered access to distributed data residing on multiple
Oracle database servers on multiple systems or nodes. Users don’t need to know the
location of the data in distributed databases. Data is accessed using a unique identi-
fier to a specific table name. Administrators can create simple identifiers so that data
in an Oracle table in a separate machine can appear to users to be part of a single log-
ical database.

306 | Chapter 13: Oracle Distributed Databases and Distributed Data

Developers can create connections between individual databases by creating database
links in SQL. These connections form a distributed database. The statement:

CREATE PUBLIC DATABASE LINK employees.northpole.bigtoyco.com

creates a path to a remote database containing a table with Bigtoyco’s North Pole
employees. Any application or user attached to a local employees database can
access the remote North Pole database by using the global access name (employees.
northpole.bigtoyco.com) in SQL queries, inserts, updates, deletions, and other state-
ments. Oracle Net (previously known as Net8 or SQL*Net in older database releases)
handles the interaction with any network protocols used to communicate with the
remote database transparently.

Although the database link makes data access transparent to users, Oracle still has to
treat interactions over distributed databases differently. Let’s look briefly at how que-
ries and updates issued for distributed Oracle databases differ from those issued for a
single Oracle database. When using distributed data in a query, your primary
concern is to properly optimize the retrieval of data for a query. Queries in a single
Oracle database are optimized for performance, most frequently using the cost-based
optimizer, as discussed in Chapter 4. Oracle7 added global cost-based optimization
for the improvement of query performance across distributed databases as well. For
example, the cost-based optimizer considers indexes on remote databases when
choosing a plan, whereas the rule-based optimizer does not. The cost-based opti-
mizer also considers statistics on remote databases. Improvements to the Oracle8i
optimizer included optimizing for join and set operations to be performed on the
nodes offering the best performance and also minimizing the amount of data sent
between systems. Since Oracle Database 10g, the cost-based optimizer is Oracle’s
only recommended optimizer for single and for distributed databases.

When a user wants to write data back to a distributed database, the issue becomes a
bit more complicated. As we’ve mentioned before, a transaction is an atomic logical
unit of work that typically contains one or more SQL statements. These statements
write data to a database and must either be committed or rolled back as a unit. Distrib-
uted transactions can take place across multiple database servers. When distributed
transactions are committed via the SQL COMMIT statement, Oracle uses a two-phase
commit protocol to ensure transaction integrity and consistency across multiple sys-
tems. This protocol is further described in this chapter’s “Two-Phase Commits” section.

Access to and from Non-Oracle Databases
Oracle’s Transparent Gateways (illustrated in Figure 13-1) are Oracle software prod-
ucts that provide users with access to non-Oracle databases via Oracle SQL. Oracle
SQL is automatically translated into the SQL of the target database, allowing
applications developed for Oracle to be used against non-Oracle databases. You can
also use native SQL syntax for the target database, which can be sent directly to the
target without translation. Oracle datatypes such as NUMBER, CHAR, and DATE

Accessing Multiple Databases As a Single Entity | 307

are converted into the datatypes of the target. Oracle data dictionary views are
provided for target data store objects. As with Oracle databases, heterogeneous data-
bases can be linked to Oracle through database links to create a distributed database.
The gateways can be deployed in a two-tier architecture in the Oracle database or in
a middle tier (Oracle Application Server).

There are four basic types of database connectivity provided:

Open Database Connectivity
Generic ODBC and OLE DB interfaces are free and are bundled with the Oracle
database. Open Systems Gateways provide access to Informix, Microsoft SQL
Server, Sybase, and other databases on Unix and Windows platforms. These
interfaces and gateways leverage Heterogeneous Services included in the Oracle
database, which determine optimal SQL strategies for the remote site. Addition-
ally, starting with Oracle Database 10g, Oracle’s OLAP Option provides OLE
DB for OLAP (ODBO) enabling access from a variety of analysis tools.

Transparent Gateways
Transparent Gateways exist for dozens of non-Oracle data stores. Mainframe
Integration Gateways provide access to DB2 on mainframes. Enterprise Integra-
tion Gateways provide access to IBM AS/400 and via IBM Distributed Relational
Database Architecture (DRDA) connections. Finally, Oracle offers the EDA/SQL
Gateways for a number of other sources. Transparent Gateway performance
improved in Oracle8 by moving Heterogeneous Services from the Transparent
Gateway layer into the database kernel. Performance was further improved in
the Oracle8i release with the introduction of multithreading for these services, in
Oracle9i with multithreaded agent support, and in Oracle Database 11g with
parallel data retrieval from non-Oracle databases. Oracle Database 10g added
support for remote functions in non-Oracle databases embedded in SELECT
statements. Oracle Database 11g adds new Gateways to connect to Adabas, IMS,
and VSAM data stores.

Procedural Gateways
Procedural Gateways implement remote procedure calls (RPCs) to applications
built on non-Oracle data stores. The Gateway for APPC, the standard IBM pro-
tocol for RPCs, is used when Oracle applications need procedural access to

Figure 13-1. Typical configuration and use of Transparent Gateways

Oracle SQL

Results

Other Database SQL

Client Oracle Database
with Transparent

Gateway

Other Database
Server

308 | Chapter 13: Oracle Distributed Databases and Distributed Data

applications built on CICS, DB2, IMS, VSAM, and other data stores on the main-
frame and applications that use SNA LU6.2 to communicate to the mainframe. The
Oracle Procedural Gateway for IBM MQSeries allows Oracle-based applications to
exchange messages with applications that communicate via MQSeries message
queues. Both are included with the Oracle Enterprise Integration Gateways.

Access Manager
An access manager provides access to Oracle from non-Oracle based applica-
tions. The Oracle Access Manager for AS/400 resides on the AS/400 and
provides AS/400 applications written in RPG, C, or COBOL access to Oracle
running on any platform. You can access Oracle from these applications through
ANSI-standard SQL or through Oracle DML or DDL. Because PL/SQL is also
supported, AS/400 applications can call Oracle stored procedures. TCP/IP and
LU6.2 are supported for connectivity (via Oracle Net). The Oracle Access Man-
ager for AS/400 is included with the Oracle Enterprise Integration Gateways.

Two-Phase Commits
One of the biggest issues associated with the use of distributed databases is the diffi-
culty of guaranteeing the same level of data integrity for updates to distributed
databases. Because a transaction that writes data to multiple databases must depend
on a network for the transmission of information, it is inherently more susceptible to
lost information than a single Oracle instance on a single machine. And since a trans-
action must guarantee that all writes occur, this increased instability could adversely
affect data integrity.

The standard solution for this problem is to use two message-passing phases as part of a
transaction commit; hence, the protocol used is referred to as a two-phase commit. The
main database first polls each of the participants to determine if they are ready; if they
are, the transactional updates are tentatively sent to them. In the second phase, if all the
participants are in agreement that the messages have properly been received, the
changes are committed. If any of the nodes involved in the transaction cannot verify
receipt of the changes, the transactions are rolled back to their original state.

For example, if a transaction is to span databases on machines A, B, and C, in the
first phase of the commit operation, each of the databases is sent the appropriate
transactional update. If each of these machines acknowledges that it has received the
update, the second phase of the update executes the COMMIT command. By
separating the transmission of the data for the update from the actual COMMIT
operation, a two-phase commit greatly decreases the possibility of distributed data
losing its integrity.

You can compare this approach to a single-phase update in which the COMMIT
command is sent along with the transactional update information. There is no way of
knowing whether the update ever reached all the machines, so any sort of interrup-
tion in the delivery of the update to any of the machines would cause the data to be in

Accessing Multiple Databases As a Single Entity | 309

an inconsistent state. When a transaction involves more than one machine, the possibil-
ity of the loss of an update to one of the machines increases greatly, which, in turn,
mandates the use of the two-phase commit protocol. Of course, since the two-phase
commit protocol requires more messaging to be passed between machines, a two-phase
commit can take longer than a standard commit; however, the corresponding gain in
all-important data integrity more than makes up for the decrease in performance.

Transaction Processing Monitors
In 1991, the X/Open standards group defined an open systems standard interface
through which transaction processing (TP) monitors could communicate with XA-
compliant resource managers, such as the Oracle RDBMS and other XA-compliant
databases. Several popular TP monitors that support XA are in production, includ-
ing BEA Tuxedo and IBM’s CICS and Encina.

Oracle added an Oracle Manager for Microsoft Transaction Server (MTS) to
Oracle8i for Windows NT. Since that time, Microsoft has superseded its COM archi-
tecture with the .NET architecture. Release 2 of Oracle9i added .NET support
enabling .NET transactional applications to use Oracle as a resource manager.

We have mentioned TP monitors in previous chapters in connection with their role
in online transaction processing. Among their other duties, TP monitors assure that
transactions between multiple applications and resources complete properly. As
noted previously, Oracle provides its own two-phase commit protocol for distrib-
uted transactions, a capability once available only with a TP monitor. Standalone TP
monitors are also used less frequently today for workload management (see
Figure 13-2), as this capability is now built into middle-tier applications.

Figure 13-2. Application server with TP monitor

Clients

Application Server
with Transaction

Processing Monitor

Database
Servers

310 | Chapter 13: Oracle Distributed Databases and Distributed Data

If you are still considering the use of TP monitors, you likely have one of these scenarios:

• Migration of legacy applications (usually originally written using CICS and
COBOL for a mainframe) to CICS on Unix or Windows NT

• Need for two-phase commits between Oracle and other XA-compliant databases

Moving Data Between Distributed Systems
The previous section discussed the use of multiple database servers acting together as
part of a single logical database for users. The following situations call for the con-
tents of a database to be duplicated and moved between systems:

• When data available locally eliminates network bandwidth issues or contention
for system resources

• When mobile database users can take their databases with them and operate dis-
connected from the network

• When redundant databases can help to deliver higher levels of reliability, as each
database can be used as a backup for other databases

In many grid implementations, the ability to share resources across the grid can also
require data to be replicated to multiple servers within the grid.

The biggest issue facing users of multiple identical or similar databases is how to
keep the data on all of the servers in sync as the data is changed over time. As a user
inserts, updates, or deletes data on one database, you need to have some way to get
this new data to the other databases. In addition, you will have to deal with the pos-
sible data-integrity issues that can crop up if the changes introduced by distributed
users contend with each other.

Oracle offers a number of strategies to address this situation. With Oracle9i Release
2, these strategies were rolled into a single component, Oracle Streams. However, the
different strategies within Streams still have their own characteristics, which are dis-
cussed separately in the following sections.

Advanced Replication
The copying and maintaining of database tables among multiple Oracle databases on
distributed systems is known as replication. Changes that are applied at any local site
are propagated automatically to all of the remote sites. These changes can include
updates to data or changes to the database schema. Replication is frequently
implemented to provide faster access for local users at remote sites or to provide a
disaster-recovery site in the event of loss of a primary site. Oracle’s Advanced Repli-
cation features support both asynchronous replication and synchronous replication.
Oracle also supports heterogeneous replication to DB2 through its Replication Ser-
vices, bundled in the Mainframe Integration Gateways.

Moving Data Between Distributed Systems | 311

Replication services have been in the Oracle database for a long time, but have been
continually evolving. Oracle8 moved execution of replication triggers to the data-
base kernel and enabled automatic parallelization of data replication to improve
performance. Oracle8i added replication triggered by changes to selected rows or
columns of a table. Oracle9i replication added support for object datatypes and
multitier updateable materialized views. Release 2 of Oracle9i added log-based
replication via Oracle Streams. Although Oracle continued to support the previous
generation Advanced Replication in newer database releases, we recommend that for
new implementations you use Streams for replication. Nevertheless, we’ll describe
replication basics here and some of the features of Advanced Replication for com-
pleteness before we cover Streams.

Asynchronous replication is the storage of changes locally for subsequent forwarding
to a remote site. Some types of asynchronous replication include read-only snap-
shots replicated from a single updateable master table and updateable snapshots
that, though disconnected, can also be updated.

In the Standard Edition of Oracle, you can have only one master site, which repli-
cates changes to its child sites. In the Enterprise Edition, multiple master sites can
exist and updates can take place at any of these sites. The updates to these sites must
be synchronized, meaning that an update is not completed until all of the target sites
have been updated; otherwise, conflicts can remain unresolved.

Conflicts can occur when more than one site updates the same data element during
the same replication interval. Changes are propagated using deferred remote proce-
dure calls (RPCs) based on events or at points in time when connectivity is available
or communications costs are minimal.

Several conflict-resolution routines provided with Enterprise Edition can be automat-
ically used to resolve replication conflicts. An administrator can simply choose which
conflict-resolution strategy he wishes to use for a particular replication. For updates
that may affect a column or groups of columns, standard resolution choices include
the following:

Overwrite and discard value
Used when there is a single master (originating) site for new values to update
current values at destination sites.

Minimum and maximum value
Minimum compares the new value at the originating site and the current value at
the destination and applies the new value only if it is less than the current value.

Maximum compares the new value at the originating site and the current value
at the destination and applies the new value only if it is greater than the current
value.

312 | Chapter 13: Oracle Distributed Databases and Distributed Data

Earliest and latest timestamp value (with designation of a column of type DATE)
Earliest dictates that when there are multiple new values, the value used for
updates will be in the row with the earliest timestamp.

Latest dictates that when there are multiple new values, the value used for
updates will be in the row with the latest timestamp.

Additive and average value for column groups with single numeric columns
Additive takes the difference of new and old values at the originating site and
adds them to the current value at the destination site.

Average takes the current value at the destination and the new value at the origi-
nating site, divides by 2, and applies the new value.

Priority groups and site priority
When priority levels are assigned to columns and multiple new values occur,
higher priority columns will update columns with lower priority.

Uniqueness conflict-resolution routines are used to resolve conflicts that result from
the distributed use of primary key and unique constraints. The built-in routines
include the following:

Append site name to duplicate value
Appends the global database name of the originating site to the replicated
column.

Append sequence to duplicate value
Appends a generated sequence number to the column value.

Discard duplicate value
Discards the row at the originating site that causes errors.

You can also write your own custom conflict-resolution routines and assign them if
your business requirements are not addressed by the standard routines.

Managing Advanced Replication

You can manage replication through Oracle Enterprise Manager. Administrators can
configure database objects that need to be replicated, schedule replication, trouble-
shoot error conditions, and view the deferred transaction queue at each location
through this central interface. A deferred transaction queue is a queue holding trans-
actions that will be replicated (and applied) to child sites.

For example, to set up a typical multimaster replication, you must first define master
groups and tables and objects to be replicated in each of the databases.

You define a connection to the master definition site, and then create one or more
master groups for replicating tables and objects to the multiple master sites. Next,
you assign conflict-resolution routines for replicated tables in each master group.
Finally, you grant appropriate access privileges to users of applications that access
the data at the multiple sites.

Moving Data Between Distributed Systems | 313

Advanced Queuing
In the 1980s, message-oriented middleware (MOM) gained popular usage. MOM uses
messages to transmit information between systems. It doesn’t require the overhead of
a two-phase commit because the MOM itself guarantees the delivery of all messages.
Products such as IBM’s MQSeries store control information (message destination,
expiration, priority, and recipients) and the message contents in a file-based queue.
Delivery is guaranteed in that the message will remain in the queue until the destina-
tion is available and the message is forwarded.

Oracle’s Advanced Queuing (AQ) facility, first introduced with Oracle8 Enterprise
Edition and now part of Oracle Streams, provides a complete queuing environment
by storing the queue in the Oracle relational database. Advanced queues are Oracle
database tables that support queuing operations—in particular, enqueue to create
messages and dequeue to consume them. These messages, which can either be
unstructured (raw) or structured (as Oracle objects, which are described in
Chapter 14), correspond to rows in a table. Messages are stored in normal queues for
normal message handling or in exception queues if they cannot be retrieved for some
reason.

Queue creation and management

Queues are created through PL/SQL commands or the Java API. An administrator
creates a queue by following these steps:

1. Create a queue table.

2. Create and name the queue.

3. Specify the queue as a normal queue or an exception queue.

4. Specify how long messages remain in the queue: indefinitely, for a fixed length of
time, until a particular time elapses between retries, or based on the number of
retries.

Queues can be started and stopped by the administrator, who also grants users the
privileges necessary for using the queue and revokes those privileges when necessary.

Producers of messages specify a queue name, enqueue options, message properties,
and the payload to be put into the queue, which is then handled by a producer agent.
Consumer agents listen for messages in one or more queues that are then dequeued
so users can use the contents. Notification of the existence of messages in the queue
can occur via the Oracle Call Interface (OCI; described in Chapter 1) callback regis-
tration or through a listen call that can be used by applications to monitor for
messages in multiple queues.

Because messages are stored persistently in queues in the database, a number of mes-
sage-management features are available. End-to-end tracking is enabled since each
message carries its history with it, including location and state of the message, nodes

314 | Chapter 13: Oracle Distributed Databases and Distributed Data

visited, and previous recipients. Messages that don’t reach subscribers within a
defined lifetime are moved to the exception queue, from which they can be traced.
Messages that successfully reach subscribers may be retained after consumption for
additional analysis, including enqueue and dequeue times. As messages may be
related (for example, one message might be caused by the successful execution of
two other messages), retaining the messages can be useful in tracking sequences.

Oracle Database 10g Release 2 introduced the ability to use nonpersistent message
queuing for better performance in situations where there is not a need for the capa-
bilities provided by data-based queues.

Queue management through Oracle Enterprise Manager includes the following
capabilities:

• Creating, dropping, starting, and stopping queues.

• Adding and removing subscribers.

• Scheduling message propagation from local to remote queues.

• Displaying queue statistics, including the average queue length, the number of
messages in the wait state, the number of messages in the ready state, and the
number of expired messages.

Oracle9i introduced several new AQ capabilities:

• XML-based messaging over HTTP enables support across firewalls; requests
may be through the XML-based Internet Document Access Protocol (iDAP).

• AQ policies and services can be defined using Dynamic Services.

• AQ agents can be defined in and managed through the Oracle Internet Direc-
tory (OID).

Oracle9i (and beyond) AQ includes a built-in message transformation for PL/SQL
and XSLT. A messaging gateway is also available for propagation to other systems,
such as MQSeries and TIBCO.

Publish-and-subscribe capabilities

Oracle8i Enterprise Edition introduced publish-and-subscribe capabilities to
Advanced Queuing. As illustrated in Figure 13-3, a publisher puts a message onto a
queue, while a subscriber receives messages from a queue. The publisher and sub-
scriber interact separately with the queue, and neither party needs to know of the
existence of the other. Publishers decide when, how, and what to publish, while sub-
scribers express an interest. Messages can be published and subscribed to using the
subject name or content (through filtering rules). Asynchronous notification is
enabled when subscribers register callback functions.

You can use Advanced Queuing and its publish-and-subscribe features for addi-
tional notification of database events that, in turn, improve the management of the

Moving Data Between Distributed Systems | 315

database or business applications. Database events such as DML (inserts, updates,
deletions) and system events (startup, shutdown, and so on) can be published and
subscribed to. As an example, an application may be built to automatically inform a
subscriber when a shipment occurs to certain highly valued customers; the sub-
scriber would then know that she should begin to track the shipment’s progress and
alert the customer that it is in transit.

Oracle Database 11g includes several enhancements to Oracle’s messaging server
that increase the performance and reliability of the server.

Oracle Streams
Oracle9i Release 2 introduced Oracle Streams, which folded the capabilities of
Advanced Replication and Advanced Queuing into a single product family and
added a method of sharing data and events within a database or between databases.
Streams enable the propagation of changes via a capture-and-apply process, includ-
ing Oracle’s change data capture. Changes can be propagated between Oracle
instances, from Oracle instances to non-Oracle instances (via Transparent
Gateways), and from non-Oracle databases to Oracle (via messaging gateways in
combination with custom code on the non-Oracle source to collect changes).
Streams leverages log-based procedures to capture DML or DDL changes or synchro-
nous capture for DML changes and then uses queuing procedures as part of the stag-
ing. User-supplied “apply” rules define consumption.

When changes are captured from an Oracle source database redo log or changes in
rows are gathered from synchronous capture, a background database process creates
a logical change record (LCR). LCR and user message events are enqueued in a

Figure 13-3. Advanced Queuing configuration for publish-subscribe applications

Publisher
Application

 Oracle Database Server
with Advanced Queuing / Rules

Engine

Subscriber
Application

Publish Message Subscribe to Queue

316 | Chapter 13: Oracle Distributed Databases and Distributed Data

Streams queue. Events are propagated from source to target queues and then, via a
background process, dequeued in the target database and applied. Since Oracle
Database 10g, downstream capture of changes and enqueue/dequeue of messages in
batch are supported.

Also, since Oracle Database 10g, Streams can be configured to provide Database
Change Notification via email, HTTP, and PL/SQL. This feature can send
notifications to a client whenever the data in a query result set has changed. Oracle
Database 11g enhances this feature enabling notification for individual row changes,
rather than just a single notification whenever any row in the result set changes.

As of Oracle Database 10g Release 2, Streams can be managed through Oracle
Enterprise Manager. A migration tool is available to aid migration from Advanced
Replication to Streams.

Streams and Grid Computing
Oracle Streams provides key functionality in grid computing implementations. By its
nature, grid computing can consist of widely distributed data, users, and platforms.
Streams enables the movement of data when and where it is needed, as well as mes-
sage sharing, notification or invocation of user procedures on events, message and
database change subscriptions, and interoperation with other platforms. Streaming
databases can offload processing to replica databases by creating operational data
stores, or can create replicas and apply changes from replicas or data transforma-
tions to the production database.

As of Oracle Database 11g, Streams can mine active online log files for DML and
DDL, enabling low-latency change propagation among RAC instances. Streams runs
from a single RAC instance identified as the primary for queues and processes. A sec-
ondary instance can be identified to provide a more highly available solution.

Streams can also play a role in database migrations to grid computing and newer
Oracle versions. When the new database is installed and while the original database
remains in production, Streams can be used to capture changes on the original data-
base that are then applied to the new database as migration nears completion.

Transportable Tablespaces
The previous sections focused on sharing data between distributed databases when
the data is “live”—making sure changes are propagated to other databases in real
time. Transportable tablespaces are a way to speed up the distribution of complete
tablespaces between multiple databases while the tablespaces are not active.

Moving Data Between Distributed Systems | 317

Transportable tablespaces were introduced with Oracle8i Enterprise Edition to rap-
idly copy and distribute tablespaces among database instances. Previously, tablespaces
needed to be exported from the source database and imported at the target (or
unloaded and loaded). Transportable tablespaces enable copies to be moved simply
through the use of file transfer commands such as ftp.

Before you copy and move a copy of the tablespace, you should make the tablespace
read-only to avoid inadvertently changing it. Data dictionary information needs to be
exported from the source prior to transfer, then imported at the target.

Some of the most popular reasons to use transportable tablespaces include:

• Rapid copying of tablespaces from enterprise data warehouses to data marts

• Copying of tablespaces from operational systems to operational data stores for
use in consolidated reporting

• Publishing of tablespaces for distribution on CD-ROM

• Use of backup copies for rapid point-in-time tablespace recovery

Oracle9i eliminated the restriction that Oracle block sizes needed to be the same in
both the source and target databases. Oracle Database 10g eliminated the restriction
that the source and target databases needed to be running on the same operating sys-
tem platform.

318

Chapter 14CHAPTER 14

Oracle Extended Datatypes 14

The Oracle database has a rich set of native datatypes, but you may sometimes need
to go beyond their capabilities, depending on the specifics of your development and
deployment requirements. You can use traditional datatypes, such as those described
in Chapter 4, to represent a portion of the information that your organization needs
to store and manage. Introduction of the XML datatype (described in Chapter 4) and
support for features such as XMLSchema, an XML DB repository (enabling URL-
based access to XML documents stored in Oracle), and SQL/XML (for generating
XML documents from SQL) have extended Oracle’s ability to function as a “XML
database.” Oracle also provides datatypes that are specifically designed to provide
optimal storage, performance, and flexibility for other specific types of data, the
focus of this chapter.

Real-world information used in business, such as purchase orders, claims forms,
shipping forms, and so on, may sometimes be best represented as object types,
which are more complex than the simple atomic datatypes discussed in Chapter 4.
Location-oriented data may best be represented using spatial coordinates. Docu-
ments, images, video clips, and audio clips have their own special requirements for
storage and retrieval.

Oracle has extended the functionality of its basic relational database engine to sup-
port the storage and manipulation of these nontraditional datatypes through the
introduction of additional features and options. Oracle has also extended the types
of data, the SQL that manipulates that data, and the basic Oracle service framework
so that you can modify the data and extend its capabilities even further.

Object-Oriented Development
An object-oriented approach to software development shifts the focus from building
computing procedures that operate on sets of data to modeling business processes.
Building software components that model business processes with documented
interfaces makes programming more efficient and allows applications to offer more

Object-Oriented Development | 319

flexible deployment strategies. It also makes applications easier to modify when busi-
ness conditions change. In addition, since the modeling reflects real business use,
application performance may improve as objects are built that do not require exces-
sive manipulation to conform to the real-world behavior of the business processes
they represent.

Oracle chose to take an evolutionary approach to object technology by allowing data
abstraction, or the creation of user-defined datatypes as objects and collections as
extensions to the Oracle relational database. The Objects and Extensibility features,
included with the database since Oracle8i, position Oracle as an object-relational
database.

Support of the Java language complements this approach. The JVM (formerly
JServer) feature is a Java Virtual Machine integrated with the database. It supports
the building and running of Java components, as well as Java stored procedures and
triggers, in the server.

Object-Relational Features
This section describes the major object-relational features available in Oracle.

Objects in Oracle

Objects created in Oracle are reusable components representing real-world business
processes. The objects created using the database Objects and Extensibility features
occupy the same role as the table in a standard relational model: the object is a tem-
plate for the creation of individual “instances” of the object, which take the same

The Promise of Code Reuse
Although a number of object-oriented approaches and technologies have been intro-
duced since the 1980s, many of the promised improvements in software development
efficiency have largely been unrealized. One of the reasons that these productivity
improvements have failed is the difficulty many developers have had in making the
adjustment to building reusable components. In addition, the need to learn new lan-
guages (such as C++) and technologies (object-oriented databases, CORBA, DCOM,
and .NET) slowed the adoption of object-oriented development. Developers did
become more familiar with these techniques and skills as Java moved into the main-
stream of development. Interestingly, Oracle leverages many of these object features
itself in development of new database capabilities.

However, the benefits of code reuse are more likely to be realized in deployment of a
Service-Oriented Architecture (SOA) today, which is described in more detail in
Chapter 15. Oracle’s Application Server/Fusion Middleware is a key component. The
database has also evolved in providing web services as we describe in this chapter.

320 | Chapter 14: Oracle Extended Datatypes

role as rows within a table. An object is “instantiated” using Oracle-supplied “con-
structors” in SQL or PL/SQL.

An object consists of a name, one or more attributes, and methods. Attributes model
the structure and state of the real-world entity, while methods model the operations
of the entity. Methods are functions or procedures, usually written either in PL/SQL
or Java or externally in a language such as C. Methods make up the interface
between an object and the outside programming environment. Each method is iden-
tified by the name of the object that contains the method and a method name. Each
method can have one or more parameters, which are the vehicles for passing data to
the method from the calling application.

For example, a purchase order can be represented as an object. Attributes can
include a purchase order number, a vendor, a vendor address, a ship-to address, and
a collection of items (with their associated quantity and price). You can use a method
to add an item to the purchase order, delete an item from the purchase order, or
return the total amount of the purchase order.

You can store objects as rows in tables or as values in columns. Each row object has
a unique object identifier (OID) created by Oracle. Row objects can be referred to
from other objects or relational tables. The REF datatype represents such references.
For column objects, Oracle adds hidden columns for the object’s attributes.

Object views provide a means of creating virtual object tables from data stored in the
columns of relational tables in the database. These views can also include attributes
from other objects. Object views are created by defining an object type, writing a
query defining the mapping between data and tables containing attributes for that
type, and specifying a unique object identifier. When the data is stored in a rela-
tional table, the unique identifier is usually the primary key. This implementation
means that you can use object-oriented programming techniques without converting
existing relational tables to object-relational tables. The tradeoff when using this
approach is that performance may be less than optimal, since the data representing
attributes for an object may reside in several different tables. Hence, it may make
sense to convert the relational tables to object tables in the future.

Objects that share the same attributes and methods are said to be in the same datatype
or class. For example, internal and external purchase orders can be in the same class as
purchase orders. Collection types model a number of objects of the same datatype as
varying arrays (VARRAYs) if the collection of objects is bounded and ordered or as
nested tables if the collection is unbounded and unordered. If a collection has fewer
than 4,000 bytes, it is stored as part of the database table; if it is larger, it is stored as a
Binary Large Object (BLOB) in a segment separate from the table that is considered
“out-of-line” storage. Nested table rows are stored in a separate table identified through
a hidden NESTED_TABLE_ID by Oracle. Typically, VARRAYs are used when an entire
collection is being retrieved and nested tables are used when a collection is being que-
ried, particularly if the collection is large and only a subset is needed.

Object-Oriented Development | 321

An application can call object methods through SQL, PL/SQL, Pro*C/C++, Java,
OCI, and the Oracle Type Translator (OTT). The OTT provides client-side map-
pings to object types by generating header files containing C structure declarations
and indicators. Developers can tune applications by using a client-side object cache
to improve performance.

Inheritance, or the use of one class of objects as the basis for another, more specific
class, is one of the most powerful features of object-oriented design. The child class
inherits all the methods and attributes of the parent class and also adds its own
methods and attributes to supplement the capabilities of the parent class. The great
power of inheritance is that a change in a parent class automatically ripples down to
the child classes. Object-oriented design supports inheritance over many levels of
parent, child, and grandchild classes.

Polymorphism describes the ability of a child class to supersede or “override” the
operation of a parent method by redefining the method on its own. Once a method
has been replaced in a child class, subsequent changes to the method in the parent
class don’t ripple down to the child class or its descendants. In the purchase order
example, as shown in Figure 14-1, purchase orders from contracted suppliers and
suppliers not under contract inherit the methods and attributes of external purchase
orders. However, the procedure for placing the order can exhibit polymorphism
because additional approvals may be required for ordering from suppliers not under
contract.

Inheritance and polymorphism were not supported in Oracle8i objects, though the
Oracle8i database could act as persistent storage for objects, and an application
interface in an object-oriented language such as C++ or Java could add these features
to the client-side implementation of objects. Oracle9i added SQL type inheritance to
the database, as well as object view hierarchies, type evolution, generic and transient
datatypes, function-based indexes for type method functions, and multilevel

Figure 14-1. Purchase order class hierarchy

Internal Purchase Order External Purchase Order

Purchase Order

Purchase Order
Contracted Supplier

Purchase Order
Noncontracted Supplier

322 | Chapter 14: Oracle Extended Datatypes

collections. Oracle Database 10g added support for remote access to object types.
Oracle Database 11g added an ANSI SQL feature that provides a method invocation
scoping operator.

Other extensibility features

Several other extensibility features are included in the Objects and Extensibility fea-
tures. These include:

• The ability to create new index types by defining the structure of the index

• The ability to store the index data inside or outside the Oracle database

• The ability to create user-defined operators for use in standard SQL statements

• An interface to the cost-based optimizer to extend support for user-defined
object types and indexes

The use of object-relational features is most common today among software develop-
ers who are building database extensions. Oracle itself has made use of these features
in the creation of many of the database features—for example, in the Spatial and
Multimedia capabilities.

Java’s Role and Web Services
Java has gained wide acceptance as an application language, particularly for building
web-based applications, due to its portability and availability on a wide variety of
platforms.

For Java developers wanting to use the Oracle database as a backend to their
applications, Oracle first offered support for JDBC 3.0 in Oracle Database 10g and
continued to offer support for the two common approaches to accessing the data-
base from a Java program: JDBC and SQLJ. Both of these approaches are based on
industry-standard application program interfaces (APIs):

JDBC
More commonly used since it can be used where SQL is dynamic, or when a
developer wants explicit control over interactions with the database.

SQLJ
An industry standard typically used when static SQL statements have been
embedded into a Java program. SQLJ is similar to other Oracle precompilers in
that Java source files are created with calls to the SQLJ runtime (as well as to
additional profile files). The Java source code is then compiled, and the applica-
tion is run with the SQLJ runtime library.

SQLJ and JDBC can be mixed in the same program when some SQL is static and
other SQL is dynamic.

Object-Oriented Development | 323

The Oracle JVM in Oracle9i and later releases (formerly JServer in Oracle8i) intro-
duced additional component- and object-based development options. Oracle9i and
subsequent versions feature a tightly integrated Java Virtual Machine (hence the JVM
name) and support for Java stored procedures in the database; these enable compo-
nent-based development to take place through the use of Enterprise JavaBeans
(EJBs). Java Messaging Support (JMS) is provided through Oracle Streams.

Oracle Database 10g added web services used in triggering database operations via
nonconnected clients. Web services capabilities in the database include SQL, PL/SQL,
embedded Java, JDBC, HTTP client, and SOAP client, and are combined with those
in Oracle Application Server (Java, J2EE, JDBC, HTTP, SOAP server, and XML). The
database can act as a web services consumer or provider and can be exposed using
JPublisher, Oracle’s utility for generating Java classes that represent user-defined data-
base entities.

As of Oracle Database 11g, the database can be treated as a service provider in a
Service-Oriented Architecture (SOA) environment using the XDB HTTP Server for
SOA. PL/SQL packages, procedures, and functions can be exposed as web services.
Dynamic SQL and XQuery queries can be executed when deploying the database in
this manner.

Enterprise JavaBeans
Server-side Java components are referred to as Enterprise JavaBeans (EJB) in con-
trast to client-side reusable interface components, which are referred to as simply
JavaBeans. You can deploy EJBs in the database server or with Oracle Application
Server. The tight integration of the Java Virtual Machine in the database makes use
of database System Global Area (SGA) memory-management capabilities to provide
EJB server scalability beyond what would be expected in most JVM implementa-
tions. For example, each client within the JVM requires only about 50-150 KB of
memory for session state.

In its initial release, Oracle8i supported the session bean, which is an EJB created by a
specific call from the client that usually exists only during a single client/server ses-
sion. Session beans may be stateless, allowing the EJB server to reuse instances of the
bean to service clients, or stateful (i.e., bound to clients directly). Database cache
information maintained by stateful session beans is synchronized with the database
when transactions occur by using JDBC or SQLJ. Entity Java beans, also known as
persistent beans (because they remain in existence through multiple sessions), were
not supported in Oracle8i but are supported in Oracle9i and subsequent database
JVMs. The third type of EJB is the message-driven bean, designed to receive asyn-
chronous Java Message Services (JMS) messages and supported via Oracle’s more
recent Applications Servers that support EJB 3.0.

324 | Chapter 14: Oracle Extended Datatypes

Extensibility Features and Options
Oracle’s extensibility features and options extend SQL to perform tasks that can’t
otherwise be easily programmed in a relational database. These include manipula-
tion of text, multimedia and content, and spatial data. These features are typically
used by application developers but are sometimes bundled with applications sold by
Oracle partners.

Oracle Multimedia and Oracle Text
Oracle Multimedia (formerly known as interMedia) has been included with the data-
base since version 8.1.6 of Oracle8i. In Oracle9i, the product’s text features became
known as Oracle Text. These features were available as options in previous versions
of Oracle:

• The Text Management feature was formerly known as the ConText Option.

• The Location Services evolved from the Spatial Option and supports the loca-
tion queries and the geocoding described later, in the “Oracle Spatial” section.

• Image storage and manipulation features were formerly bundled in the Image
Option.

Additionally, the product extensions enable the storage and manipulation of audio
and video clips including extraction of content and organizing metadata as a CLOB
in XML format. Oracle has positioned Oracle Multimedia and Oracle Text as being
useful features for applications that typically include multiple media types since the
features integrate all of these key datatypes and their associated functions. Oracle
Multimedia and Oracle Text utilize a number of underlying database storage
options, which are described in Table 14-1.

Table 14-1. Storage options for Oracle Multimedia and Oracle Text

Type Storage options

Text/images VARCHAR2

BLOB

CLOB

VARCHAR

CHAR

LONG

LONG RAW

Object attribute

Master-detail stores (in which the master table identifies the text or image and the detail table
contains the content)

BFILEs

URLs that point to content

DICOM

Extensibility Features and Options | 325

Oracle Database 10g was enhanced to store large documents of up to 128 terabytes
in LOBs. Oracle Database 11g Multimedia object type media size limits are extended
to those of BLOBs (between 8 and 128 terabytes). Also introduced in this version of
Multimedia is a new, higher-performing BLOB implementation accessible via Ora-
cle’s SecureFiles.

Oracle Multimedia and Oracle Text support a number of commonly used formats:

• Documents can be indexed while stored in formats such as ASCII, Microsoft
Word, Excel, and PowerPoint, WordPerfect, HTML, XML, and Adobe Acrobat
(PDF).

• Audio formats supported include AU, AIFF, AIFF-C, WAV, MPEG1, MPEG2,
and MPEG4 audio formats.

• Video formats supported include Apple QuickTime 3.0, AVI, video MPEG for-
mats (MPEG and MP4), and Real Networks Real video format (RMFF).

• Image formats supported include BMPF, CALS, FPIX, GIFF (gif), JFIF (jpeg),
PBMF, PGMF, PPMF, PPNF, PCXF (pcx), PICT, PNGF, RPIX, RASF, TGAF,
TIFF, and WBMP. Image-compression formats supported include ASCII encod-
ing, BMPRLE, DEFLATE, DEFLATE-ADAM7, FAX3, FAX4, GIFLZW,
GIFLZW-INTERLACED, HUFFMAN3, JPEG, JPEG-PROGRESSIVE, LZW,
LZWHDIFF, NONE, PACKBITS, PCXRLE, RAW, SUNRLE, and TARGARLE.

• As of Oracle Database 11g, Digital Imaging and Communications in Medicine
(DICOM) version 3, a medical imaging standard, is supported. The database
includes support for single-frame and multiframe images, waveforms, 3-D vol-
ume slices, video segments, and structured support. Methods and functions are
available to convert DICOM to JPEG, GIF, PNG, TIFF, and other formats.
Metadata can be extracted into XML documents or custom mappings can be
created.

With Oracle’s text-management capabilities, you can identify the strongest theme (or
gist) of a document and generate document summaries based on that theme. Oracle
Database 10g additions included theme (NEAR) proximity searching and the ability
to determine the character set and language of documents with unknown content.
Searching capabilities include full-text searches for word and phrase matching, theme
searches, and mixed searches for both text and nontext data. As of Oracle Database
10g, native indexing columns of type XMLType using Oracle Text are supported.

Audio and video
clips

BLOB

BFILE

URLs that point to content

Locator ordinates VARRAYs

Table 14-1. Storage options for Oracle Multimedia and Oracle Text (continued)

Type Storage options

326 | Chapter 14: Oracle Extended Datatypes

Since typical users of Oracle text management are often news services that publish
news items to interested users via the Web, recent database releases include an algo-
rithm for determining the popularity rankings of web pages and content. Also
included since Oracle Database 10g is an easy, custom text application building
interface through JDeveloper with a text application generator, a catalog search
application generator wizard, and a classification training set wizard.

Image support in the Oracle database includes conversion among image and
compression formats, access to raw pixel data, and support for basic image-
manipulation functions such as scaling and cropping.

Clients can access audio and video files through Java Media Framework (JMF) play-
ers. (Java Advanced Imaging in Oracle9i and more recent releases also provide image
support through JMF.) Streaming servers such as the Real Networks Server can also
deliver audio and video content on demand.

You can also access images, audio, and video stored in Oracle and Multimedia
through C++, Java, OCI, or PL/SQL. Oracle Database 10g and newer database
release image object types support the SQL/MM Still Image standard, ISO/IEC
13249-5 SQL and support for the Sun Microsystems Java Advanced Imaging (JAI)
package for storing and processing content. DICOM content stored in Oracle Data-
base 11g is accessible using Java and PL/SQL APIs.

Audio, video, and images stored using Multimedia might also be included as part of a
web site using a variety of web-authoring tools. Content services are provided to the
Portal in Oracle Application Server, Oracle JDeveloper, and various Oracle partners.

Oracle Content Management
Oracle’s Content Database Suite provides core document services in the Oracle data-
base and the infrastructure needed to build document management applications.
Content DB provides the repository and the Content Server manages the docu-
ments. The suite can be used for file server consolidation, management of document
policies and procedures, document sharing and collaboration, and as a content
repository for applications.

In 2007, Oracle completed the acquisition of Stellent and began providing a more
complete content management framework and suite of applications called Universal
Content Management (UCM). UCM consists of an enterprise content management
suite that supports document management, web content management, digital asset
management, and records management.

A third pillar in Oracle’s content management offerings is Imaging and Process
Management (IP/M) supporting process-oriented imaging applications for Oracle’s
E-Business Suite, PeopleSoft, and JD Edwards products. Modules supported include
accounts payable and receivable automation, travel and expense automation, and
HR and application processing.

Extensibility Features and Options | 327

When deploying such an infrastructure, extensive records management and security
are often stated requirements. Oracle’s Universal Records Management (URM)
provides unified consistent records and central policy retention management for
Oracle’s enterprise content management solutions. The content repositories are
accessed through adapters. For example, URM in combination with a Content DB
adapter is a replacement for Oracle’s earlier Records DB offering.

Information Rights Management (IRM) can be deployed to issue Secure Keys from
an IRM Server, controlling access to and securing sensitive content. IRM enables
management of centralized policies, auditing, monitoring, encryption, and rights
revocation.

Oracle Ultra Search
Ultra Search provides search and location information for text in Oracle databases,
other ODBC-accessible databases, Oracle Portal repositories, IMAP mail servers,
HTML documents available from web servers, and other files. Oracle database ver-
sion 8.1.7 introduced Ultra Search, leveraging Oracle Text. Today, Ultra Search is
included with the Oracle database and the Oracle Application Server.

Ultra Search gathers information using a Java process crawler started by Oracle on a
set schedule. The crawler indexes the documents residing on various servers using
Oracle Text, and then stores this information in an Oracle database. The Ultra
Search administration tool is a J2EE-compliant web application. Application build-
ers can invoke Ultra Search using PL/SQL or Java procedures and use the APIs to
make crawler results “searchable.”

In Oracle Application Server, Ultra Search is located in the metadata repository.
Application Server users can search and receive a list of results through a portlet that
can be accessed through Oracle Portal.

In a secure search, document retrieval is based on user access rights. An access con-
trol list (ACL) is evaluated during such a secure search. The ACLs are stored in XML
DB.

Ultra Search requires management skills commonly found where Ora-
cle databases and Application Servers are deployed. For organizations
wanting to deploy content search without those skills, Oracle offers
Secure Enterprise Search (SES) with plug-ins for a wide variety of data
sources and commonly deployed Internet directories.

Oracle Spatial Option
Spatial data is data that contains location information. The Oracle Spatial Option
provides the functions and procedures that allow spatial data to be stored in an Ora-
cle database and then accessed and analyzed according to location comparisons.

328 | Chapter 14: Oracle Extended Datatypes

An example of using spatial query functions to combine spatial and standard
relational conditions would be to “find all homes within two square miles of the
intersection of Main Street and First Avenue in which the residents’ income is greater
than $100,000, and show their location.” This query might return a list of home
addresses or, when used with a Geographic Information System (GIS), plot the home
locations on a map, as shown in Figure 14-2. Geocoding matches references such as
addresses, phone numbers (including area codes), and postal codes (with longitude
and latitude), which are then stored in the database.

Multiple geometric forms are supported by the Oracle Spatial Option to represent
many different types of spatial data, including points and point clusters, lines and
line strings, polygons and complex polygons with holes, arc strings, line strings,
compound polygons, and circles. You can determine the interaction of these fea-
tures through the use of operators such as touch, overlap, inside, and disjoint.

Data that shares the same object space and coordinates but represents different char-
acteristics (such as physical and economic) is often modeled in layers. Each layer is
divided into tiles representing smaller subareas within the larger area. A representation
of this tile is stored with a spatial index that provides for quick lookups of multiple
characteristics in the same tile. The Spatial Option uses these representations to rap-
idly retrieve data based on spatial characteristics. For example, you can perform a
query against a physical area to examine where pollutants, minerals, and water are

Figure 14-2. Geographic Information System display of a spatial query

Main Street

1s
t A

ve
nu

e

Using the Extensibility Framework in Oracle | 329

present. Each of these characteristics is likely to be stored in a separate layer, but
they can be quickly mapped to their common tiles. The designers of these spatial-
based databases can increase the resolution of the maps by increasing the number of
tiles representing the geography.

The Spatial Option fully leverages Oracle’s object features through the use of a spa-
tial object type that represents single or multielement geometries. Spatial coordinates
are stored in VARRAYs.

Oracle Database 10g introduced the GeoRaster for storing, indexing, querying, ana-
lyzing, and delivering raster image data, associated spatial vector geometry data, and
metadata. This feature enables storage of multidimensional grid layers and digital
images in an object-relational schema that are referenced to coordinate systems.
Oracle Database 11g added three-dimensional geometry objects and enhanced web
services support including business directory, Web Feature Service (WFS), Catalog
Services for the Web (CSW), and OpenLS support.

In the real world, most spatial implementations in business aren’t custom-built from
SQL, but instead utilize purchased GIS solutions that are built on top of databases.
Many of these GIS providers include Oracle Spatial technology as part of their prod-
uct bundles.

Using the Extensibility Framework in Oracle
Oracle allows users to extend the basic functionality of the database. Oracle’s exten-
sibility framework provides entry points in which developers can add their own
features to the existing feature set. By using this framework you can do the following:

Add new relational or set operators for use in SQL statements
These operators can be useful when working with extended datatypes, such as
multimedia or spatial data. You can create relational operators that relate specifi-
cally to a particular datatype, such as the relational operator CLOSER TO,
which you can use in SQL statements that access spatial data.

Create cooperative indexing
Cooperative indexing is a scheme in which an external application is responsible
for building and using an index structure that you can use with complex
datatypes. The indexes created are known as domain indexes.

Extend the optimizer
If you use extended indexes, user-defined datatypes, or other features, you can
extend the statistics-collection process or define selectivity and cost functions for
these extended features. The cost-based optimizer can then use these to choose
an appropriate query plan.

330 | Chapter 14: Oracle Extended Datatypes

Add cartridge services
These are services used by Oracle database extensions (such as the spatial capa-
bilities) providing memory management, context management, parameter
management, string and number manipulation, file I/O, internationalization,
error reporting, and thread management. These services are available to soft-
ware developers to provide a means to create uniform integration of extensions
with the Oracle database.

With these features, the extensibility framework enables you or a third-party soft-
ware developer to integrate additional functionality into the main Oracle database
while still using the core features of the database, such as security management,
backup and recovery, and the SQL interface.

331

Chapter 15 CHAPTER 15

Beyond the Oracle Database15

As we have mentioned (just a few times before!), the Oracle database is a deep and
wide product, providing vast realms of capabilities. Until now, though, this book has
focused on Oracle as a database—a place to store, retrieve, and manipulate data. As
such, your Oracle database is an integral part of your overall infrastructure.

This chapter goes beyond this core functionality to explore features of Oracle beyond
its data-centric core. This chapter focuses on three main areas:

• Application Express, a browser-based declarative development tool. Application
Express, commonly referred to as ApEx, is a free add-on to an Oracle database
that you can use to create applications.

• Fusion Middleware, which encompasses the functionality of Oracle Application
Server and more.

• Oracle SOA Suite, which provides the Service-Oriented Architecture (SOA), a
group of features and offerings that allow your Oracle database to deliver spe-
cific functionality in an easy-to-integrate form.

Application Express
In Chapter 1, we provided a basic overview of various development tools that could
be used with the Oracle database and stated that we would not delve further into the
development area. This section makes an exception to that rule by covering Applica-
tion Express (commonly known as ApEx), a development tool that comes with the
Oracle database and simplifies HTML application development. We discuss ApEx
here because the tool can be downloaded for free and installed on an Oracle database
installation without any other software, and because the tool creates applications by
generating PL/SQL packages that are stored in the Oracle database.

332 | Chapter 15: Beyond the Oracle Database

The Application Express product was previously known at HTML-DB, which itself
sprung from WebDB. All of these products had the same basic development method-
ology—browser-based wizards that helped you create application components that
also ran in a browser.

ApEx creates components as PL/SQL packages that produce the browser-based user
interface. ApEx components can include forms, reports, and charts. The ApEx
development environment gives you the ability to create rich applications, and that
environment is too robust to fully describe in this brief section. The following points
emerge as some of the more interesting aspects of ApEx:

• ApEx is data-centric, which means that links can be built into reports and charts.
The automatic links make it easy to drill down into data for more detail.

• You can use a web service to provide data for ApEx forms and reports.

• You can import data from a spreadsheet into an Oracle table with an easy util-
ity, or export the contents of a report or page to a spreadsheet.

• You can export any report to a PDF, making the report available outside the
ApEx environment.

• ApEx allows you to specify basic look-and-feel specifications for all the pages in
your application.

• SQL Workshop, a component of ApEx, gives you a graphical interface to use in
creating and managing your Oracle data.

• Oracle Technology Network offers a hosted version of ApEx that you can use
from any browser.

• You can create your own security schemes for limiting access to pages within an
application.

• You can add JavaScript logic to extend your ApEx application.

• The latest release of ApEx includes an Access migration tool that will help you
move your data from an Access application into your Oracle database. Once the
data is in Oracle, you can quickly generate an ApEx application for the data.

Oracle Fusion Middleware
At the most basic level, users do not care where the computing resources that handle
their requirements come from. The first edition of this book came out at a time when
the overall computing environment was moving from a client/server model, where
computing operations were split between a client computer and a server, and the
dawn of the Internet age, where the “new” paradigm of on-demand computing
allowed access to applications without depending on client-side resources. Of
course, this change was just another swing of the pendulum, from the days when the
computing environment was dumb clients and centralized mainframes.

Oracle Fusion Middleware | 333

The current IT landscape uses multiple tiers of servers. Many organizations have a
database tier, full of servers that handle the Oracle software, and an intermediate tier
of application servers. These servers typically are used to deploy applications, acting
as a pool of resources that sit between the user and the database tier.

As this multitier architecture grew in popularity, so too did the functionality pro-
vided by these application servers. More and more components, which provided a
broader reach of prebuilt functional areas, were added to the application servers.
Oracle Application Server (AS), the focus of the following sections, is one of the lead-
ing examples of application servers available today, based on both the amount of
functionality and the sales of the product.

Oracle Application Server, which, prior to Oracle Database 10g was known as Ora-
cle iAS, is the other major component of the “Oracle platform.” Oracle Application
Server has continually grown in the number of components it includes and the scope
of functionality those components address. AS both complements and supplements
the capabilities of the Oracle database, combining to create a highly integrated yet
open infrastructure.

The main component of Oracle’s Fusion Middleware is Oracle Application Server
10g or a more current release (depending on when you are reading this book). Fusion
Middleware also encompasses the Oracle SOA Suite, covered in the next section, and
other components more recently introduced to the Oracle stack. The remainder of
this section focuses on the components of Fusion Middleware that come with Ora-
cle Application Server.

Oracle Application Server Editions
Oracle Application Server comes in four separate editions, as of the release of Oracle
Database 11g:

Java Edition
Contains the HTTP Server, Java Containers for J2EE, JDeveloper, Oracle Appli-
cation Development Framework, Toplink, Oracle Business Rules (described as
part of the Oracle SOA Suite later in this chapter), MapViewer, and Enterprise
Manager.

Standard Edition One
A counterpart to Oracle Database Standard Edition One, AS SE1 contains all the
capabilities of Standard Edition but is limited to deployment on a single server
with no more than two CPUs. This edition also includes a limited-use licence for
Oracle Internet Directory.

Standard Edition
Contains everything in Java Edition as well as Portal, Web Cache, single sign-on
capabilities, and the Content Management SDK. Also includes Oracle Internet
Directory.

334 | Chapter 15: Beyond the Oracle Database

Enterprise Edition
Contains everything in Standard Edition with these additional components:

• Reporting and Forms services

• Oracle Business Intelligence Discoverer

• Personalization

• Wireless

• Oracle Sensor Edge Server

• Integration components

• Oracle Enterprise Service Bus described as part of the Oracle SOA Suite
below

You can optionally add Oracle WebCenter, Oracle Business Activity Monitoring,
and Oracle BPEL Manager to the Enterprise Edition, and Oracle Service Registry to
all editions of AS. WebCenter is described in this section, while the other three
options are covered in the section on the Oracle SOA Suite later in this chapter.

Oracle Application Server Installation
You can see from the brief list of functionality in the previous section that Oracle
Application Server is a broad product. You can configure AS as part of the installa-
tion process to provide different types of functionality, including J2EE Server, Web
Cache, Portal, Wireless, Business Intelligence, and Forms.

Oracle Application Server Components
The following subsections discuss the various functional components of Oracle
Application Server. Services, which affect the overall operation of AS, are described
in the later section, “Oracle Application Server System Services.”

HTTP Server

The Oracle HTTP Server (OHS) that is part of Oracle Application Server is the same
basic product that we described in earlier sections as part of the database. OHS in AS
is based on Apache, but provides some additional modules, known as mods,
including:

mod_oc4j
Directs requests for Java modules to the Oracle Containers for Java component,
described below

mod_jserv
Used for Java Server Pages

Oracle Fusion Middleware | 335

mod_webdav
Supports versioning through web-based Distributed Authoring and Versioning
(WebDAV)

mod_osso
Provides built-in single sign-on functionality

You can add other mods to OHS, but Oracle Support may ask you to remove unsup-
ported modules if a problem occurs.

Oracle HTTP Server includes the ability to use server-side includes, which can be
used to add code to the headers and footers of all pages served to implement stan-
dardized behaviors and look-and-feel.

OHS provides virtual host capabilities, which let you use a single instance of OHS to
map to multiple hostnames. OHS can act as a proxy server or a reverse proxy server,
and it can also support URL rewriting, which allows administrators to change the
location of a page without requiring users to change the way they access the page.
OHS includes a proxy plug-in for Internet Information Server and SunONE server,
enabling requests to these servers to be automatically rerouted to OHS. These plug-
ins can provide the load balancing functionality, described in the later section,
“Clustering,” for Oracle Containers for J2EE (described in the following section).

Containers for J2EE (OC4J)

The core Java capabilities of Oracle Application Server are provided by Oracle Appli-
cation Server Containers for J2EE, also known as OC4J. This component is a Java
virtual machine, providing support for a wide range of Java 1.3 standards, including
session beans, entity beans (with both bean-managed and session-managed persis-
tence), and message-driven Java beans, Java Server Pages 1.2 and Servlets 2.3, and
Java Message Service.

You can scale OC4J by having multiple instances of OC4J on a single machine as
well as having multiple threads, each running a single application module, in an indi-
vidual OC4J instance.

OC4J also implements JDBC connections to the Oracle database, which can include
connection pooling.

TopLink

TopLink provides object-relational mapping, the ability to associate object attributes
with relational tables and columns. Because TopLink performs this mapping, a
developer can change the mapping without changing the Java code that accesses the
underlying data.

TopLink also provides caching and optimization to reduce database and network
traffic.

336 | Chapter 15: Beyond the Oracle Database

Development tools

Oracle Application Server 10g includes several development kits:

Application Development Framework (ADF)
Meant to simplify Java development by including a wide variety of prebuilt ser-
vices and libraries to allow rapid implementation of core Java services.

XML Development Kit
Provides components, tools, and utilities for working with XML in applications.

Content Management Kit
Integrates with Oracle content management products in Collaboration Suite and
provides a variety of capabilities, including security, versioning, workflow, and
search and retrieval operations.

MapViewer
Makes it easier to build maps to represent themes or locations.

WebCenter
A component in Oracle Application Server since Application Server 10g Release
3. Designed to bring together the worlds of Java, AJAX, business intelligence,
content management, and collaboration services. Oracle has stated that Web-
Center will be the “default user environment for the next generation of Oracle
Applications called Fusion Applications,” so it seems that this environment will
become more prominent as we move forward.

The increased need for integration of diverse applications has thrust web services to
the forefront of application development. Oracle Application Server supports a range
of web service standards, including SOAP, WSDL, and UDDI. AS includes the ability
to easily publish both stateful and stateless J2EE classes as web services, automati-
cally generating WSDL descriptions and client-side proxy stubs.

Naturally, the course of standards bodies, like that of true love, never runs smooth.
AS already provides integration between .NET SOAP and Java SOAP, and Oracle has
stated its intention to continue this type of integration.

Development servers

Oracle’s traditional development tools, including Oracle Forms Developer (formerly
known as Developer), Oracle Reports, and JDeveloper, are part of the Oracle Devel-
oper Suite of products, as are Oracle Designer and Discoverer. However, AS includes
runtime services for Forms and Reports.

Oracle Application Server, Enterprise Edition, comes with a Forms Services compo-
nent. This component allows a user to run the user interface to a Forms application
as a Java applet on the client. The Forms Service creates a server process to handle
HTTP requests from the Java client.

Oracle Fusion Middleware | 337

AS Enterprise Edition also includes a Reports Server used in deploying Oracle’s pre-
vious-generation Reports product. The Reports Server creates and manages reports
processes to handle user requests. Reports can be cached for a specified length of
time, so that subsequent requests are satisfied by retrieving the report, rather than by
running the queries for the report again. Reports can be scheduled to run and be
delivered to multiple recipients.

Portal

Oracle Application Server Portal has gone through some significant changes in its
history. When it was first released under the name of WebDB, as part of the Oracle
database, Portal was viewed as a tool to create HTML-based applications, a role sub-
sequently taken by HTML DB, and later ApEx, described earlier in this chapter.
WebDB was renamed Oracle Portal, and the aim of the product was changed to
focus on bringing together separate sources of information into a common desktop.
Entire books have been written on Portal alone, so the description in this section is,
of necessity, a very brief overview of the range of Portal capabilities.

Portal uses pages, which can consist of static or dynamic information, and which use
a theme for overall look and feel. Portal includes wizards for easy creation of pages.

Portlets are applications that can get information from a wide variety of sources,
from a database to a web source, and can be plugged into the Portal framework. The
Portal framework provides a look and feel as well as navigation controls for all the
information displayed in it.

Developers can allow users to customize some parts of portlet and page display, and
Portal will automatically save these customizations. Portal provides a single sign-on
capability to identify users and secure content.

A user can search across all information in a portal with a built-in search mecha-
nism. Developers can also add categorization to pages to aid in searches. A single
Portal deployment can also deploy multiple versions of pages in different languages.

Oracle Application Server 10g Release 2 introduced a new feature called Instant
Portal, which creates a portal, including relevant portlets, with a single click on
installation. The release also added the Oracle Portlet Factory, created to make it
easy to build portlets against a variety of data sources, most notably SAP.

Wireless

OracleAS Wireless is a set of services and applications that form a development plat-
form that can be used to create applications to address a variety of mobile devices
and forms, including PDAs, cell phones, and other wireless devices. OracleAS Wire-
less supports three modes:

338 | Chapter 15: Beyond the Oracle Database

Pull mode
In this mode, a wireless user requests information.

Push mode
In this mode, information is sent to a wireless user.

Persistent mode
In this mode, a wireless user can maintain an application even when he or she is
out of wireless contact.

This component also includes a set of mobile enablers, which provide services that
wireless applications commonly need. These enablers include:

• Content and data syndication, which translates web and WAP content for
mobile devices

• Location services

• Personalization

• Analytics, used to understand user behaviors

• Commerce, used for mobile wallets and payment integration

• Provisioning, used for phone and device settings

• Synchronization, used for phones and devices, as well as data synchronization
with Oracle Lite

• Notification, used to provide multichannel conditional and time-based alerts

OracleAS Wireless also includes three mobile applications:

• Mobile Office, which includes basic productivity applications for mobile devices

• Multichannel messaging, which lets you send a message to different mobile
devices

• Mobile Location, which helps to add location awareness with driving directions,
a business finder, and maps

Security

Security features are used to limit access to data, applications, and computing
resources. The Oracle database has a complete security system, described in
Chapter 6. Oracle Application Server can be used to authenticate users, store secu-
rity credentials, and implement identity management.

Identity management allows an administrator to establish and maintain a security
identity for a user and enforce it across an entire set of computing components, such
as databases, application servers, and applications. Oracle Application Server uses
the Oracle Internet Directory (OID) to store security information and provide user
authentication. OID is an Lightweight Directory Access Protocol (LAPD) compliant
store of information. Any application can access OID, including the Oracle database.

Oracle Fusion Middleware | 339

Identity management also includes a number of other features, including:

• A user provisioning framework that can be integrated with other applications,
such as the HR system, provided with OID

• Directory integration tools, provided with OID

• PKI certificate management, provided with AS Certificate Authority, now a part
of OID

• Tools for managing security, implemented as part of Enterprise Manager

In addition, Oracle Application Server provides a single sign-on capability. As the
name implies, this service allows a user to log on once; the user’s information is then
used by various computing entities to retrieve the authenticated identity of the user.

Oracle’s identity management solution can also be integrated with other third-party
identity management products.

Oracle Application Server 10g Release 3 added security features and includes the
Oracle Security Developer Toolkit, enabling developers to implement a variety of
cryptographic and security features. The range of Oracle identity management capa-
bilities added support for heterogeneous security sources. The Oracle Certificate
Authority is now included as part of a larger set of modules called Oracle Identity
Management Control.

Business intelligence

Business intelligence can encompass a wide spectrum of options. Oracle’s acquisi-
tion of technologies from Siebel and Hyperion enabled Oracle to offer a full suite of
best-of-breed business intelligence ad-hoc query, analysis, and reporting tools. As
Oracle reintroduced these products in the Oracle family, Oracle’s previous-
generation business intelligence tools remained a part of the Oracle Application
Server 10g release. These included:

Reports services
These services are discussed earlier in the “Development tools” section.

Discoverer
Discover is a tool that business analysts use to obtain business intelligence data
from an Oracle database. The analysts use Discoverer to query and retrieve data
via a browser-based interface and to manipulate it in a variety of ways, including
drill down, pivoting, and changing the layout and presentation of data into vari-
ous forms, such as tabular and crosstab forms. Administrators set up an End
User Layer to simplify complex access to multiple data sources, complete with
appropriate aggregation. Because Discoverer can also present data in a graphical
format, Figure 15-1 is worth the remaining thousand words of description. Dis-
coverer is also available as part of the Oracle Business Intelligence Suite.

We cover all of Oracle’s current business intelligence tools and the Oracle database
as used for data warehousing in more depth in Chapter 10.

340 | Chapter 15: Beyond the Oracle Database

Integration

Integration is a broad area that encompasses bringing together information from
different sources. The Oracle database has a number of features for integration,
including Streams and Heterogeneous Gateways. Oracle Application Server 10g
Release 1 included the following set of features for integration, including:

Integration Modeler
This is an HTML-based tool that can model business processes and map data
transformations. The results of this tool are stored in a repository, and they can
be changed at any time.

Integration Manager
This tool handles the runtime processes used for integration.

Adapters
Oracle Application Server includes a set of adapters for packaged applications,
such as SAP and Peoplesoft, as well as other databases and messaging systems.
You can also create your own adapters with an Adapter SDK.

In Oracle Application Server 10g Release 2, AS’s integration components were
refactored to include Oracle Integration Interconnect (which is designed to make
integration of different sources easier), BPEL Process Manager and Business Activity
Monitor (described later in the “Oracle SOA Suite” section), and integration with
Data Hubs (designed to give a single view of different data sources).

Figure 15-1. Typical Discover output

Oracle Fusion Middleware | 341

Oracle Application Server System Services
The remaining areas of Oracle Application Server capabilities provide services that
affect more than one of the functional areas described in earlier sections:

• Management capabilities address the entire AS stack.

• Caching improves performance across many areas of functionality.

• AS allows for several types of clustering and load balancing for scalability and
reliability.

• RFID-handling capabilities are provided via Oracle Sensor Edge Server.

The following sections describe these areas.

Management

With the Oracle Database 10g release, the scope of Enterprise Manager was broad-
ened to encompass AS. Enterprise Manager (described in Chapter 5) now provides
availability and performance tracking for both Oracle Application Server and the
Oracle database. For instance, Enterprise Manager automatically provides informa-
tion on the web pages that take the longest to serve, and it does this by mining the
log files for AS, so there is virtually no impact on performance.

AS now lets you archive the configuration of an individual instance either to act as a
backup before making configuration changes or to apply to any other instance.

Oracle Application Server 10g Release 2 added an implementation for management
beans, based on the JMX standard, that provides management and deployment func-
tionality for JavaBeans based on OC4J.

In Oracle Application Server 10g Release 3, Oracle introduced a new management
capability with Dynamic Resource Monitor (DRM). The monitor is designed to
watch resource utilization across nodes and dynamically allocate these resources,
based on policies created by the system manager.

Caching

Caching is a standard concept in computing; caching speeds up the retrieval of fre-
quently used information by saving it in a location where it can be rapidly retrieved.
In the database, this means keeping frequently used data in memory, rather than
retrieving it from disk. For Reports Server, described earlier, this means saving a
report rather than running it again.

Oracle Application Server includes two specific components meant to provide addi-
tional caching capabilities: Web Cache and Java Object Cache.

The idea behind Web Cache is fairly simple—maintain copies of frequently
requested information in a cache so the information does not have to be retrieved
every time it is requested. Web Cache works on HTML pages and parts of pages. It

342 | Chapter 15: Beyond the Oracle Database

can cache either static or dynamic data and includes validation routines that you can
implement to specify when the data should be refreshed. Web Cache is aware of
individual user and application dependencies on data, so it automatically caches and
delivers situation-specific information.

HTML code uses Edge Side Includes to indicate where partial page content goes, and
Web Cache will use those directives to assemble pages with cached data. Web Cache
can also cache images, audio, video, Java, and search results.

Web Cache also compresses web pages, which can speed delivery to clients. Both
cache validation rules and compression rules can be implemented with regular
expressions for flexibility.

Web Cache instances can be on the same node as Oracle Application Server
instances, or on their own servers, as shown in Figure 15-2. Web Cache instances
can be clustered with a load balancer or use a built-in clustering capability. This
capability provides a shared distributed cache, where each cache instance is aware of
the contents of the other cache instances. Web Cache can be used with Forms and
Reports.

Web Cache includes a technology Oracle refers to as surge protection. Surge protec-
tion proactively monitors the load on each server and implements actions to prevent
the servers from being overwhelmed by a spike in traffic or a denial-of-service attack.

In Oracle Application Server 10g, Web Cache is used to collect the data on page
service times that are used by Enterprise Manager’s Application Performance Moni-
toring feature.

The Java Object Cache is implemented with a set of Java classes. As its name implies,
this cache stores frequently used Java objects in memory or disk. Developers use a
set of attributes associated with a Java object to define how an object is loaded into
the cache, where an object is stored, and validation rules that specify when an object
is moved out of the cache.

Clustering and load balancing

Oracle Application Server instances can be clustered together, for higher perfor-
mance and availability. You can cluster Web Cache, Java Container, Portal, Forms
Service, Report Servers (deprecated in Oracle Application Server 10g Release 2), or
OID instances. In addition, you can use Real Application Clusters to provide cluster-
ing capabilities for the AS infrastructure or Portal. A multitier set of clusters is shown
in Figure 15-2.

mod_oc4j, which directs requests to the Oracle Container for Java from the Oracle
HTTP Server, provides load balancing across multiple instances of the Java Con-
tainer, based on several different types of schemes, including varieties of random
assignment, round robin, and metric-based. With Oracle Application Server 10g

Oracle Fusion Middleware | 343

Release 2, an OC4J instance can host clustered and nonclustered applications at the
same time.

You can implement load balancing for either stateless requests or requests that carry
state. State-based load balancing is implemented with cookies and can be done either
explicitly or with Java Object Cache. Oracle Java Containers are aware of nodes that
share state information, so they can provide high availability for stateful load balanc-
ing by redirecting requests to a failed node to another node that shared application
state with the failed node. In Oracle Application Server 10g, you can create policies
that can reallocate a node from one cluster to another without having to restart the
cluster.

Oracle Application Server includes a high availability framework, which monitors
instances for their health, informs the system of problems, and automatically
attempts to restart failed instances. Each node in a cluster contains its own configu-
ration information, so if the node containing the repository that describes the cluster
becomes unavailable, the node can continue to run. Oracle HTTP Server (OHS) can
rebuild the repository on a designated backup node, eliminating this potential single
source of failure.

Oracle Application Server 10g Release 3 added a Flashback capability giving admin-
istrators the ability to revert to earlier versions of configuration and system files, and
Application Server Guard used to verify and synchronize standby servers. Of course,
since AS is focused on running applications rather than storing data, these functions
are not nearly as complex as the similar functionality available for the database,
which must support thousands of potential users.

Figure 15-2. Multiple levels of clustering in Oracle Application Server

Web Cache Cluster

OHS Cluster

OC4J Cluster

Web
cache

instance

Web
cache

instance

Web
cache

instance

OHS
instance

OHS
instance

OHS
instance

OC4J
instance

OC4J
instance

OC4J
instance

OC4J
instance

OC4J
instance

OC4J
instance

OC4J
instance

OC4J
instance

OC4J
instance

344 | Chapter 15: Beyond the Oracle Database

AS can be installed to use underlying hardware cluster functionality in what is called
a Cold Failover Cluster. This configuration uses a shared disk attached to multiple
machines. If the primary server should fail, operations fail over to a backup server.
Oracle Application Server 10g also supports Active Failover Clusters (AFCs)
(although the initial release of AS 10g did not support this configuration in a produc-
tion environment). AFCs require a load balancer in front of the active nodes, but
both nodes can operate at the same time, providing scalability with high availability.
Figure 15-3 shows the differences between these two types of failover configurations.

Of course, many uses of Oracle Application Server involve multiple
services, such as Java, identity management, and database access. To
use clustering for high availability, you must avoid single points of fail-
ure for all of these services. This can require careful planning and
multiple clustering and failover schemes.

For easier creation of clusters, AS comes with a feature called Distributed Configura-
tion Management (DCM), which simplifies creating clones of existing nodes and
redistributes J2EE components to the new node.

Figure 15-3. Cold Failover and Active Failover Clusters

Clients

Inactive
infastructure Active

infastructure

V. hostHardware
cluster

$ORACLE_HOME

-OID
-SSO
-DAS
-Infrastructure
 DB instance

Clients

Active
infastructure

node 1

Active
infastructure

node 2

Hardware
cluster

Infrastructure
DB files

OID 2
SSO 2
DAS 2
DB instance 2

Load balancer

OID 1
SSO 1
DAS 1

DB instance 1

Config files
($0_H1)

Config files
($0_H2)

Middle
Tier

Shared
storage

Shared
storage

Local
storage

Local
storage

Middle
Tier

Middle
Tier

Middle
Tier

Oracle SOA Suite | 345

Oracle Application Server 10g and newer releases also leverage a feature in the data-
base called failover notification. Prior to AS 10g, an AS instance had to wait for a
TCP/IP timeout to know that a database server node had failed. With this new
release, the cluster management software for the database cluster proactively informs
the AS instance of a failure, reducing failover time.

RFID handling in Oracle Sensor Edge Server

The Oracle Sensor Edge Server component of Oracle Application Server is used to
process and dispatch RFID sensor information. The component captures RFID data
close to the source, eliminates redundant or nonrelevant events, and forwards the
appropriate events on to other processes.

Oracle SOA Suite
The Oracle SOA Suite pulls together a number of software offerings that can address
issues related to a Service-Oriented Architecture (SOA), one of the hot buzzwords in
the industry as of 2007.

The buzz that surrounds SOA is not there because the concepts or implementation
are, for the most part, new. The core idea behind SOA is easy reuse and sharing of
application functionality—a goal that organizations have been striving toward for
decades. SOA reinvigorates the quest for these virtues with the new elements added
by the Web.

The Web provides two key ingredients to the SOA story. First, there are new widely
adopted standards such as XML and BPEL (which uses XML as its dialect). Stan-
dardization provides a common language at some levels of the application stack,
reducing the overhead required for translation between applications.

Second, the Web expanded the reach of IT, in the sense that the user community
breached the organizational walls that used to limit the scope of applications. When
you can get valued functionality from outside your own solution set, the benefits that
come from reuse and integration are correspondingly multiplied.

A Service-Oriented Architecture exposes applications, modules, and data as web ser-
vices—essentially, an Application Program Interface (API) for logic and data access.
This interface can help standardize functionality and data access, which will help to
overcome some of the issues that have acted as roadblocks to reuse and integration
in the past.

The components of the Oracle SOA Suite are described in the following sections.

346 | Chapter 15: Beyond the Oracle Database

Oracle BPEL Process Manager
BPEL stands for Business Process Engineering Language. As its name implies, BPEL
is a standard language that helps to “orchestrate” or “choreograph” web services to
act together. The concept of orchestration is implemented through BPEL as work-
flows that describe the order and conditions under which different web services
interact. Orchestration requires explicit definitions of business processes, since the
interaction is controlled by a central process. With choreography, multiple processes
act as peers, so less information is required about the different business processes,
making this technique more appropriate for use with web services from multiple
external sources.

Oracle BPEL Process Manager is a plug-in for either Oracle’s JDeveloper product or
the Eclipse framework. The Process Manager gives users a graphical interface to
describe process steps and interactions, as well as an engine for executing and moni-
toring steps in a process.

Business Activity Monitoring
Oracle Business Activity Monitoring (BAM) is used to create dashboards, which give
quick graphical indications of progress on key business indicators (KPIs). Oracle says
that their BAM implementation links back to the processes that create the informa-
tion used for the KPIs, which means that a collection of issues that stem from the
same process failure will not overwhelm an administrator.

Oracle BAM also has the ability to collect information from a variety of sources in
real-time, giving more timely information and providing users with more time to
address the issues that have generated the alerts.

Business Rules
Business rules are implementations of logic separate from, but used by, multiple
applications. The use of business rules provides flexible reuse of business logic and,
perhaps more importantly, consistent implementation of that logic. This consistency
is increasingly important in today’s business climate, where legislation can require
that companies prove how they are making business decisions. By delegating spe-
cific implementation of business logic to a separate system, you can ensure that all
applications that require this logic do so consistently, and you can point to the spe-
cifics in the standard implementation to satisfy audit requirements.

The Oracle Business Rules component of Oracle Application Server combines a Rule
Authoring tool (which lets users create rules using English-like syntax), a Rules
Engine (which executes the called rules), and a Rules SDK (for programmatic access
to rules and the rules repository).

Oracle SOA Suite | 347

Enterprise Service Bus
In order for an SOA solution to work, all the services must be able to communicate
freely with each other. This simple task is complicated by multiple communications
protocols and the need to connect the service descriptions (in Web Services Defini-
tion Language, or WSDL) between all the players in the environment.

Oracle’s Enterprise Service Bus (ESB) provides this capability and more. The ESB
also delivers the ability to transform messages and data between consumers using
Oracle Adapters (explained below) to connect to hundreds of data sources, model
interactions between service providers, and implement efficient message routing and
monitoring in the runtime environment.

Web Services Manager
When you start to use web services from an extremely wide range of sources, you are
running the risk that your overall operations could be compromised by any of these
sources. Oracle Web Services Manager is designed to define security and monitoring
on web services, providing the safety required by enterprises and the proof of compli-
ance that audit committees may demand.

Oracle Web Services Manager gives you the ability to define and manage security
policies for web services. You can also monitor the use of web services and store the
security rules in UDDI-compliant registries for proof of compliance.

Oracle JDeveloper
Oracle JDeveloper is Oracle’s Java development environment. Oracle JDeveloper
was introduced by Oracle in 1998 to enable developing of basic Java applications
without writing code. JDeveloper is now available for free and can be downloaded
from the Oracle Technology Network, as well as being included as part of the Ora-
cle SOA Suite. Oracle Application Server 10g Release 3 introduced a new look and
feel for JDeveloper.

Oracle JDeveloper includes wizards for generating data forms, JavaBeans, and Bean-
Info, and for deploying your Java applications. JDeveloper includes database
development features such as various Oracle drivers, a Connection Editor to hide the
JDBC API complexity, database components to bind visual controls, and a SQLJ pre-
compiler for embedding SQL in Java code that you can then use with Oracle.

The final JDeveloper application is written in Java code, even though you may have
developed large parts of the application using wizards.

348 | Chapter 15: Beyond the Oracle Database

Adapters
Oracle Adapters provide a standards-based (Web Services Invocation Framework, or
WSIF) interface to established external applications and protocols. There are Oracle
Adapters available for more than 300 packaged applications and a variety of proto-
cols, including CICS, Tuxedo, and FTP. You can see any of these targets as data
sources with Oracle Adapters.

Oracle Service Registry
Oracle Service Registry is not a part of Oracle SOA Suite, but is a useful component
in an SOA solution. The Service Registry is a repository for information about all ser-
vices, so you can use it both to discover information about external services for your
use and to publish information about your own services for others.

Oracle Service Registry is integrated with the components of the SOA Suite to act as
the official repository of services for those components. However, Oracle Service
Registry has been a component of Oracle Application Server since Oracle Applica-
tion Server 10g.

349

Appendix A APPENDIX A

What’s New in This Book for Oracle
Database 11g1

When we wrote the first edition of Oracle Essentials in 1999, our goal was to offer a
new kind of book about Oracle, one that would clearly and concisely cover all of the
essential features and concepts of the Oracle database. In order to keep our focus on
those essentials, we limited the scope of the book.

For instance, we decided not to cover SQL, or PL/SQL, in depth; these complex top-
ics would have required a level of detail that would have run counter to the purpose
of our book, and they are amply described in other books.

The latest release of the Oracle database, Oracle Database 11g, contains many new
features. Most of these features build on the existing foundation of Oracle database
technology.

We have tried to add details about these features in the chapters in which their dis-
cussion seemed most appropriate, but there are of course some enhancements in the
new release that are outside the scope of this book.

The following sections summarize the new features of Oracle Database 11g that are
covered in this new edition, chapter by chapter. Although many of these features are
mentioned in multiple chapters, they are listed here according to where the most rel-
evant discussion occurs.

Chapter 1: Introducing Oracle
This introductory chapter was extensively updated to reflect the packaging changes
in Oracle Database 11g. It also briefly mentions features described in more detail in
other chapters.

350 | Appendix A: What’s New in This Book for Oracle Database 11g

Chapter 2: Oracle Architecture
This chapter describes the initialization parameters that must be specified in Oracle
Database 11g, database and instance characteristics, and background processes. New
features include:

Automatic memory management
Provides automatic distribution of memory among SGA and PGA instance
components.

PL/SQL Function Result Cache in shared pool area
Improves performance in cases where PL/SQL functions use the same
parameters.

Chapter 3: Installing and Running Oracle
Although the standard installation and runtime operations of the Oracle database
remain essentially the same, a few Oracle Database 11g enhancements are covered in
this chapter:

Oracle Internet Directory
This product is now part of the Fusion Middleware product stack.

Automated memory management of SGA and PGA size
Enabled by default when you set the MEMORY_MANAGEMENT parameter.

Flashback transaction
Continues to expand the flashback capabilities of the Oracle database by giving
you the ability to reverse the effects of individual transactions.

Chapter 4: Data Structures
This chapter covers the basic data structures and optimization technology in the
Oracle database. New features include:

Virtual columns
These columns, defined as the results of an expression, are not stored in the
database, but are accessible to users with appropriate security clearance at
runtime.

Invisible indexes
You can remove an index from consideration by the optimizer by making it
invisible—you know, like a ghost.

Chapter 5: Managing Oracle | 351

Interval partitioning
Gives Oracle Database 11g the ability to create a new partition with a fixed
interval when data to be inserted does not fit in any existing partitions.

Composite partitioning (additional types)
New composite partitioning types include list-range, list-hash, and list-list. Parti-
tioining can also be based on functions or virtual columns.

Partition pruning
Gives applications the ability to control partition pruning.

Partition Advisor
Gives users an analysis of when partitions could improve performance.

Sequences in PL/SQL
Allows the use of sequences in PL/SQL expressions.

Compound triggers
You can now combine triggers with different timing options into a single
compound trigger, which can help improve performance.

Database replay
Captures workloads on production systems and allows you to replay them on
other systems, such as test environments.

SQL Advisor
Combines SQL Tuning Advisor, SQL Access Advisor, and Partition Advisor
(mentioned above). Covered in more detail in Chapter 7.

Chapter 5: Managing Oracle
This chapter covers Oracle Enterprise Manager improvements and manageability
offered in Oracle Database 11g. New features include:

SQL Performance Impact Advisor
Forecasts how system changes will impact SQL performance.

Undo Advisor
Enables automatic undo management.

Health Monitor infrastructure
Components enable a Support Workbench and include the SQL Test Case
Builder, SQL Repair Advisor, and Data Recovery Advisor.

Real Applications Testing Option
Enables capture of a production workload for replay in a test database
environment.

352 | Appendix A: What’s New in This Book for Oracle Database 11g

Chapter 6: Oracle Security, Auditing, and Compliance
This chapter is new in this edition, although some of the material was covered in
Chapter 5 in previous versions of the book. The chapter also covers some significant
new features available with Oracle Database 11g:

Prompting for default security settings
To improve security “out of the box,” Oracle Database 11g installation proce-
dures prompt you to determine whether you want to keep the default security
settings.

Tablespace encryption
You can use Transparent Data Encryption to encrypt entire tablespaces.

Auditing on by default
The default setting for database auditing is ON.

Flashback Data Archive
Gives you a way to see all the changes that have happened to a record over the
course of its lifetime, which is very useful for compliance.

Chapter 7: Oracle Performance
This chapter covers enhancements that provide better performance and performance
analysis in the latest release:

Automatic Database Diagnostic Monitor for clusters
ADDM can now be used with clusters.

SQL Advisor
Combines the SQL Tuning Advisor, SQL Access Advisor, and Partition Advisor
(previously described). Also mentioned in Chapter 4.

Automatic Workload Repository baselines
Can create baselines for AWR to cover specific time periods.

Very large file backups
Backups can now include very large files.

Query results caching
Oracle Database 11g can cache entire result sets, which can improve the perfor-
mance of repeated queries.

Automatic profiling
The Oracle database can automatically spot and profile queries that require lots of
resources, and this can improve their performance. This feature can also produce
advice on new indexes to help enhance performance on queries using these indexes.

Default Database Resource Manager (DRM) plan
The default plan is designed to limit the resources used by automated mainte-
nance tasks, such as gathering statistics.

Chapter 10: Oracle Data Warehousing and Business Intelligence | 353

Chapter 8: Oracle Multiuser Concurrency
The ability to handle very large groups of users without excessive contention, while
protecting data integrity, has long been one of the best features of the Oracle data-
base. This capability has been a core part of the Oracle database for 20 years, but this
chapter also covers workspaces, which have changed a bit in the latest release:

Workspace enhancements
Provide support for optimizer hints for workspaces and a wider range of data
maintenance operations on workspace-enabled tables.

Chapter 9: Oracle and Transaction Processing
Oracle has been one of the leading databases for OLTP for many years. Although
Oracle Database 11g includes many enhancements to improve the performance and
manageability of the Oracle database when used for OLTP, there were no significant
new features covered in this chapter.

Chapter 10: Oracle Data Warehousing and Business
Intelligence
In addition to covering the database and data warehousing, this chapter describes
Oracle’s current suites of business intelligence tools and business intelligence appli-
cations. New features in the database for data warehousing include:

Database OLAP Option query rewrite and improved manageability
The OLAP Option is now refreshed similarly to materialized views, and the data-
base optimizer can transparently redirect SQL queries to the OLAP Option
stored summaries.

Binary XML
Performance of binary XML is up to 15 times that of XML LOBs stored in Oracle.

Partitioning enhancements
There are new composite types (list-hash, list-list, list-range, and range-range)
and a new partitioning type, interval partitioning, that automatically creates
range partitions as needed.

Data Mining Option enhancements
This option now provides generalized Linear Model algorithms and automated
data preparation.

354 | Appendix A: What’s New in This Book for Oracle Database 11g

Chapter 11: Oracle and High Availability
This chapter describes the Oracle characteristics that keep your database up and
highly available. New features include:

Automatic Storage Management Fast Mirror Resynchronization
Resynchronizes only changed ASM disk extents for faster recovery.

Flashback Transaction command
Backs out an individual transaction and dependent transactions.

Total Recall Option
Provides a Flashback Data Archive capability to query data as of a previous date.

Active Data Guard Option
You can now query your standby database while redo apply is active; fast-start
failover is also possible.

Data Guard Management
SQL*Plus can be used as an interface for Data Guard SQL statements and initial-
ization parameters.

Chapter 12: Oracle and Hardware Architecture
New coverage in this chapter’s description of various hardware architectures
includes the implications of multicore CPUs and an introduction to Oracle’s Opti-
mized Warehouse Initiative. A new option in this chapter is:

Advanced Compression Option
Provides compression for insert, update, and delete operations.

Chapter 13: Oracle Distributed Databases and
Distributed Data
This chapter focuses on using Oracle as the core database for accessing data stored in
non-Oracle databases, as well as using Oracle as a distributed database. New fea-
tures include:

Transparent Gateway query performance
Oracle Database 11g supports parallel retrieval for queries against non-Oracle
databases through Transparent Gateways.

Extended Transparent Gateway targets
Provides new Gateways for ADABAS, IMS, and VSAM.

Messaging server
These enhancements improve the performance and reliability of the server.

Chapter 15: Beyond the Oracle Database | 355

Database Change Notification
You can now enable notification when individual rows change.

Oracle Streams enhancements
It is now possible to log active online log files for DDL and DML and to run
from a single Real Application Clusters (RAC) node for the entire RAC cluster.

Chapter 14: Oracle Extended Datatypes
This chapter describes capabilities beyond Oracle’s standard set of datatypes. New
features enhancing Oracle’s support of extended datatypes include:

Object-relational enhancements
A method invocation scoping operator is now available.

Database as a Service-Oriented Architecture (SOA) services provider
PL/SQL packages, procedures, and functions are now exposed as web services.

Multimedia (formerly interMedia) enhancements
These include media size limits extended to those of BLOBs, a higher-
performing BLOB implementation accessible via SecureFiles, and DICOM medi-
cal imaging support.

Spatial enhancements
Support for three-dimensional geometry objects and enhanced web services.

Chapter 15: Beyond the Oracle Database
This chapter covers the world beyond the boundaries of the Oracle database. The
chapter now describes Application Express (ApEx), an HTML-based development
tool that can be used to create applications that run from the Oracle database plat-
form. It also includes Fusion Middleware, which has combined the software stack of
Oracle Application Server as well as additional components, and the Oracle SOA
Suite, aimed at SOA developers.

356

Appendix BAPPENDIX B

Additional Resources 2

In this concise volume, we have attempted to give you a firm grounding in all the
basic concepts you need to understand Oracle and use it effectively. We hope we
have accomplished this goal. At the same time, we realize that there is more to using
a complex product such as Oracle than simply understanding how and why it works
the way it does. Although you can’t use Oracle without a firm grasp of the founda-
tions of the product, you will still need details if you’re actually going to implement a
successful system.

This appendix lists two types of additional sources of information for the topics cov-
ered in this book—relevant web sites, which act as a constantly changing resource
for a variety of information, and a chapter-by-chapter list of relevant books, articles,
and Oracle documentation.

For the chapter-by-chapter list, the sources fall into two basic categories: Oracle doc-
umentation and third-party sources. Typically, the Oracle documentation provides
the type of hands-on information you will need regarding syntax and keywords, and
the third-party sources cover the topics in a more general and problem-solving way.
We have listed the third-party sources first and ended each listing with the relevant
Oracle documentation. Also note that some of the volumes listed here include previ-
ous Oracle release names in their titles. You can assume that by the time you are
reading this, similar volumes exist (or will soon exist) for whatever version of Oracle
you may be using (for example, Oracle Database 11g).

Web Sites
Oracle Corporation: http://www.oracle.com

The home of the company. Latest information and marketing, as well as some
good technical and packaging information.

Books and Oracle Documentation | 357

Oracle Technology Network: http://otn.oracle.com
The focal point of Oracle Corporation’s attempt to reach a wider audience of
developers. You can find tons of stuff at the Oracle Technology Network
(OTN), including low-cost developer versions or free downloads of most Oracle
software and lots of information and discussion forums.

International Oracle Users Group (IOUG): http://www.ioug.org
The International Oracle Users Group web site includes information on meet-
ings, links to Oracle resources, a technical repository, discussion forums, and
special interest groups.

OraPub, Inc.: http://www.orapub.com
Craig Shallahamer’s site devoted to all things Oracle. Craig was a long-time
Oracle employee in the performance analysis group and technical reviewer for
various editions of this book.

Quest Software: http://www.quest.com
The Quest Software site for all things PL/SQL-oriented, as well as information
on Oracle database administration, Java database programming, and other
topics.

O’Reilly Media, Inc.: http://www.oreilly.com
The O’Reilly web site, which contains web pages for each book and a variety of
other helpful information. See http://www.oreilly.com/catalog/oressentials4/ for
errata and other information for this book.

Books and Oracle Documentation
The following books and Oracle documentation provide additional information for
each chapter of this book.

Chapter 1: Introducing Oracle
Ellison, Lawrence. Oracle Overview and Introduction to SQL. Belmont, CA: Oracle

Corporation, 1985.

Greenwald, Rick et al. Professional Oracle Programming, Indianapolis, IN: Wrox/
John Wiley & Sons, 2005.

Kreines, David, and Brian Laskey. Oracle Database Administration: The Essential Ref-
erence. Sebastopol, CA: O’Reilly Media, Inc., 1999.

Loney, Kevin, and Bob Bryla. Oracle10g DBA Handbook. New York, NY: McGraw-
Hill, 2005.

Ralston, Anthony, ed. Encyclopedia of Computer Science and Engineering. New York,
NY: Nostrand Reinhold Company, 1983.

358 | Appendix B: Additional Resources

Thome, Bob. Achieving a 24x7 e-Business Leveraging the Oracle Database. Belmont,
CA: Oracle Corporation, 2000.

Flashback Data Archive (An Oracle White Paper). Redwood Shores, CA: Oracle
Corporation, 2007.

Oracle Database 11g Concepts. Redwood Shores, CA: Oracle Corporation, 2007.

Oracle Database New Features Guide 11g Release 1. Redwood Shores, CA: Oracle
Corporation, 2007.

Oracle Database 11g: Real Application Testing and Manageability Overview (An Ora-
cle White Paper). Redwood Shores, CA: Oracle Corporation, 2007.

Chapter 2: Oracle Architecture
Kreines, David, and Brian Laskey. Oracle Database Administration: The Essential Ref-

erence. Sebastopol, CA: O’Reilly Media, Inc., 1999.

Loney, Kevin. Oracle Database 10g The Complete Reference. New York, NY:
McGraw-Hill, 2004.

Oracle Database Concepts. Redwood Shores, CA: Oracle Corporation, 2007.

Chapter 3: Installing and Running Oracle
Kreines, David, and Brian Laskey. Oracle Database Administration: The Essential

Reference. Sebastopol, CA: O’Reilly Media, Inc., 1999.

Toledo, Hugo, and Jonathan Gennick. Oracle Net8 Configuration and Troubleshoot-
ing. Sebastopol, CA: O’Reilly Media, Inc., 2000.

Oracle Database Concepts. Redwood Shores, CA: Oracle Corporation, 2007.

Oracle Database Installation Guide. 11g Release for Microsoft Windows. Redwood
Shores, CA: Oracle Corporation, 2007.

Oracle Database Net Services Administrators Guide. Redwood Shores, CA: Oracle
Corporation, 2007.

Oracle Enterprise Manager Basic Installation and Configuration. Redwood Shores,
CA: Oracle Corporation, 2007.

Chapter 4: Data Structures
Date, C.J., The Relational Database Dictionary. Sebastopol, CA: O’Reilly Media, Inc.,

2006.

Ensor, Dave, and Ian Stevenson. Oracle Design. Sebastopol, CA: O’Reilly Media, Inc.,
1997.

Books and Oracle Documentation | 359

Harrington, Jan L. Relational Database Design Clearly Explained. San Francisco, CA:
AP Professional, 1998.

Oracle Database Concepts. Redwood Shores, CA: Oracle Corporation, 2007.

Chapter 5: Managing Oracle
Feuerstein, Steven, with Bill Pribyl. Oracle PL/SQL Programming, Fourth Edition.

Sebastopol, CA: O’Reilly Media, Inc., 2005.

Greenwald, Rick, and David Kreines. Oracle in a Nutshell: A Desktop Quick
Reference. Sebastopol, CA: O’Reilly Media, Inc., 2002.

Himatsingka, Bhaskar, and Juan Loaiza. “How to Stop Defragmenting and Start Liv-
ing: The Definitive Word on Fragmentation.” Paper no. 711. Belmont, CA:
Oracle Corporation, 1998.

Kuhn, Darl, and Scott Schulze. Oracle RMAN Pocket Reference. Sebastopol, CA:
O’Reilly Media, Inc., 2002.

Manning, Paul, and Angelo Pruscino. Simplify your Job—Automatic Storage Manage-
ment (Oracle White Paper). Redwood Shores, CA: Oracle Corporation, 2003.

Legato Storage Manager Administrator’s Guide. Belmont, CA: Oracle Corporation,
1999.

Oracle Database Administrator’s Guide. Redwood Shores, CA: Oracle Corporation,
2007.

Oracle Database Backup and Recovery Basics. Redwood Shores, CA: Oracle
Corporation, 2007.

Oracle Database Concepts. Redwood Shores, CA: Oracle Corporation, 2007.

Oracle Database Storage Administrator’s Guide. Redwood Shores, CA: Oracle
Corporation, 2007.

Oracle Database VLDB and Partitioning Guide. Redwood Shores, CA: Oracle
Corporation, 2007.

Oracle Enterprise Manager Concepts. Redwood Shores, CA: Oracle Corporation,
2007.

Feature Overview: Oracle Enterprise Manager EM2Go. Redwood Shores, CA: Oracle
Corporation, 2003.

Managing the Complete Oracle Environment with Oracle Enterprise Manager (Oracle
White Paper). Redwood Shores, CA: Oracle Corporation, 2003.

360 | Appendix B: Additional Resources

Chapter 6: Oracle Security, Auditing, and Compliance
Knox, David Effective Oracle Database 10g Security by Design. New York, NY:

McGraw-Hill, 2005.

Feurstein Steven, and Bill Pribyl. Oracle PL/SQL Programming. Sebastopol, CA:
O’Reilly Media, Inc., 2005.

Nanda, Arup, and Steven Feuersten. Oracle PL/SQL for DBAs. Sebastopol, CA:
O’Reilly Media, Inc., 2005.

Oracle Database Advanced Security Administrator’s Guide. Redwood Shores, CA:
Oracle Corporation, 2003.

Oracle Database Label Security Administrator’s Guide. Redwood Shores, CA: Oracle
Corporation, 2003.

Oracle Database Security Guide. Redwood Shores, CA: Oracle Corporation, 2007.

Oracle Database 2 Day + Security Guide. Redwood Shores, CA: Oracle Corporation,
2007.

Chapter 7: Oracle Performance
Millsap, Cary, with Jeff Holt. Optimizing Oracle Performance. Sebastopol, CA:

O’Reilly Media, Inc., 2003.

Niemiec, Rich et al. Oracle Database 10g Performance Tuning Tips & Techniques.
New York, NY: McGraw-Hill, 2007.

Oracle Database Concepts. Redwood Shores, CA: Oracle Corporation, 2007.

Oracle Database Performance Tuning Guide. Redwood Shores, CA: Oracle
Corporation, 2007.

Oracle Real Application Clusters Administration. Redwood Shores, CA: Oracle
Corporation, 2007.

Chapter 8: Oracle Multiuser Concurrency
Oracle Database Concepts. Redwood Shores, CA: Oracle Corporation, 2007.

Chapter 9: Oracle and Transaction Processing
Gray, Jim, and Andreas Reuter. Transaction Processing: Concepts and Techniques.

San Francisco, CA: Morgan Kaufmann Publishers, 1992.

Edwards, Jeri, with Deborah DeVoe. 3-Tier Client/Server at Work. New York, NY:
John Wiley & Sons, 1997.

Oracle Database 10g Application Developer’s Guide—Fundamentals. Redwood
Shores, CA: Oracle Corporation, 2003.

Books and Oracle Documentation | 361

Oracle8i Call Interface Programmer’s Guide. Belmont, CA: Oracle Corporation,
1999.

Oracle Database Concepts Guide. Redwood Shores, CA: Oracle Corporation, 2007.

Oracle Database Java Developer’s Guide. Redwood Shores, CA: Oracle Corporation,
2007.

Oracle Database Net Services Reference Guide. Redwood Shores, CA: Oracle Corpo-
ration, 2007.

Oracle Real Application Clusters Administration and Deployment Guide. Redwood
Shores, CA: Oracle Corporation, 2003.

Oracle Streams Advanced Queuing Users Guide and Reference. Redwood Shores, CA:
Oracle Corporation, 2007.

Chapter 10: Oracle Data Warehousing and Business Intelligence
Berry, Michael J.A., and Gordon Linoff. Data Mining Techniques. New York, NY:

John Wiley & Sons, 1997.

Dodge, Gary, and Tim Gorman. Oracle8 Data Warehousing. New York, NY: John
Wiley & Sons, 1998.

Hobbs, Lilian et al. Oracle9iR2 Data Warehousing. Oxford, UK: Butterworth-
Heinemann, 2003.

Inmon, W.H. Building the Data Warehouse. New York, NY: John Wiley & Sons,
1996.

Kelly, Sean. Data Warehousing, The Route to Mass Customisation. Chichester,
England: John Wiley & Sons, 1996.

Kimball, Ralph. The Data Warehouse Toolkit. New York, NY: John Wiley & Sons,
1996.

Peppers, Don, and Martha Rogers. Enterprise One to One. New York, NY: Currency
Doubleday, 1997.

Peppers, Don, Martha Rogers, and Bob Dorf. One to One Fieldbook. New York, NY:
Currency Doubleday, 1999.

Stackowiak, Robert et al. Oracle Data Warehousing and Business Intelligence Solu-
tions. Indianapolis, IN: John Wiley & Sons, 2007.

Stackowiak, Robert. “Why Bad Data Warehouses Happen to Good People.” The
Journal of Data Warehousing, April 1997.

Oracle Data Mining Concepts. Redwood Shores, CA: Oracle Corporation, 2007.

Oracle Database Concepts. Redwood Shores, CA: Oracle Corporation, 2007.

362 | Appendix B: Additional Resources

Oracle Database Data Warehousing Guide. Redwood Shores, CA: Oracle
Corporation, 2007.

Oracle Database 2 Day + Data Warehousing Guide. Redwood Shores, CA: Oracle
Corporation, 2007.

Oracle OLAP User’s Guide. Redwood Shores, CA: Oracle Corporation, 2007.

Oracle Warehouse Builder User’s Guide. Redwood Shores, CA: Oracle Corporation,
2007.

Chapter 11: Oracle and High Availability
Chen, Lee et al. “RAID: High Performance, Reliable Secondary Storage.” ACM Com-

puting Surveys, June 1994.

Peterson, Erik. “No Data Loss.” Standby Database. Belmont, CA: Oracle Corpora-
tion and Paul Manning, EMC Corporation, 1998.

Oracle Database Backup and Recovery Basics. Redwood Shores, CA: Oracle
Corporation, 2007.

Oracle Database Concepts. Redwood Shores, CA: Oracle Corporation, 2007.

Oracle Data Guard Concepts and Administration. Redwood Shores, CA: Oracle
Corporation, 2007.

Oracle High Availability Overview. Redwood Shores, CA: Oracle Corporation, 2007.

Oracle Streams Replication Administrator’s Guide. Redwood Shores, CA: Oracle
Corporation, 2007.

Chapter 12: Oracle and Hardware Architecture
Morse, H. Stephen. Practical Parallel Computing. Cambridge, MA: AP Professional,

1994.

Pfister, Gregory. In Search of Clusters. Upper Saddle River, NJ: Prentice Hall PTR,
1995.

Oracle Grid Computing (An Oracle Business White Paper). Redwood Shores, CA:
Oracle Corporation, 2003.

Chapter 13: Oracle Distributed Databases and Distributed Data
Cerutti, Daniel, and Donna Pierson. Distributed Computing Environments. New

York, NY: McGraw-Hill, 1993.

Dye, Charles. Oracle Distributed Systems. Sebastopol, CA: O’Reilly Media, Inc., 1999.

Ortalie, Robert, Dan Harkey, and Jeri Edwards. The Essential Distributed Objects
Survival Guide. New York, NY: John Wiley & Sons, 1996.

Books and Oracle Documentation | 363

Oracle Streams Advanced Queuing User’s Guide and Reference. Redwood Shores, CA:
Oracle Corporation, 2007.

Oracle Database Concepts. Redwood Shores, CA: Oracle Corporation, 2007.

Oracle Database Heterogeneous Connectivity Administrator’s Guide. Redwood
Shores, CA: Oracle Corporation, 2007.

Oracle Streams Advanced Queuing User’s Guide. Redwood Shores, CA: Oracle
Corporation, 2007.

Oracle Streams Replication User’s Guide. Redwood Shores, CA: Oracle Corporation,
2007.

Chapter 14: Oracle Extended Datatypes
Bales, Donald. Java Programming with Oracle JDBC. Sebastopol, CA: O’Reilly

Media, Inc., 2001.

Siegal, Jon. CORBA Fundamentals and Programming. New York, NY: John Wiley &
Sons, 1996.

Taylor, David A. Object-Oriented Technology: A Manager’s Guide. Alameda, CA:
Servio Corporation, 1990.

Oracle Database Concepts. Redwood Shores, CA: Oracle Corporation, 2007.

Oracle Multimedia User’s Guide. Redwood Shores, CA: Oracle Corporation, 2007.

Oracle Multimedia Reference. Redwood Shores, CA: Oracle Corporation, 2007.

Oracle Database Java Developer’s Guide. Redwood Shores, CA: Oracle Corporation,
2007.

Oracle Database Object Relational Developer’s Guide. Redwood Shores, CA: Oracle
Corporation, 2007.

Oracle Database SecureFiles and Large Objects Developer’s Guide. Redwood Shores,
CA: Oracle Corporation, 2007.

Oracle Database 2 Day Developer’s Guide. Redwood Shores, CA: Oracle
Corporation, 2007.

Oracle Database 2 Day + Java Developer’s Guide. Redwood Shores, CA: Oracle
Corporation, 2007.

Oracle Spatial Developer’s Guide. Redwood Shores, CA: Oracle Corporation, 2003.

Oracle Spatial GeoRaster Developer’s Guide. Redwood Shores, CA: Oracle
Corporation, 2007.

Oracle Text Reference. Redwood Shores, CA: Oracle Corporation, 2007.

Oracle Ultra Search User’s Guide. Redwood Shores, CA: Oracle Corporation, 2007.

364 | Appendix B: Additional Resources

Chapter 15: Beyond the Oracle Database
Greenwald, Rick, and Robert Stackowiak, Oracle Application Server 10g Essentials,

Sebastopol, CA: O’Reilly Media, Inc., 2005.

Muench, Steve. Building Oracle XML Applications. Sebastopol, CA: O’Reilly Media,
Inc., 2000.

Oracle Application Server 10g (A Technical White Paper). Redwood Shores, CA: Ora-
cle Corporation, 2003.

Oracle Application Server 10g—Grid Computing (An Oracle White Paper). Redwood
Shores, CA: Oracle Corporation, 2003.

Oracle Application Server 10g R3 New Features Overview (An Oracle White Paper).
Redwood Shores, CA: Oracle Corporation, 2006.

Oracle Database Application Express User’s Guide. Redwood Shores, CA: Oracle
Corporation, 2007.

Oracle Database Java Developer’s Guide. Redwood Shores, CA: Oracle Corporation,
2007.

Oracle Database 10g SQLJ Developer’s Guide and Reference. Redwood Shores, CA:
Oracle Corporation, 2003.

Oracle XML DB Developer’s Guide. Redwood Shores, CA: Oracle Corporation,
2007.

Oracle 10g: Infrastructure for Grid Computing (An Oracle White Paper). Redwood
Shores, CA: Oracle Corporation, 2003.

365

We’d like to hear your suggestions for improving our indexes. Send email to index@oreilly.com.

Index

Numbers
3GLs (third-generation languages), 10, 11
3NF (third normal form), 102

A
access control

distributed databases, 147
fine-grained, 144
manager, 308
views, using for, 144

ACID (Atomic, Consistent, Isolated,
Durable) properties, 202

Active Failover Clusters (AFCs), 344
ad hoc query tools, 241
Adapters, 340, 347
ADDM (Automatic Database Diagnostic

Monitor), 124, 156
ADR (Automatic Diagnostic

Repository), 125
Advanced Compression Options, 7
Advanced Encryption Standard (AES), 28
Advanced Networking Option (ANO), 28,

148
Advanced Queuing (see AQ)
Advanced Security Option (ASO), 28, 147
advisors

Data Recovery Advisor, 125
Memory Advisors, 124, 157
MTTR Advisor, 125
Partition Advisor, 97, 120
Segment Advisor, 124, 125, 158
SQL Advisor, 157, 183
SQL Advisor tool, 120

SQL Performance Impact Advisor, 124
SQL Repair Advisor, 125
SQL Tuning Advisor, 124
Streams Tuning Advisor, 125
Undo Advisor, 125, 158

AES (Advanced Encryption Standard), 28
AFCs (Active Failover Clusters), 344
AFTER SUSPEND trigger, 61
aliases (see naming services)
ALL_ views, 121
ALL_ROWS, 114
allocating memory, 176
ALTER, 141
ALTER DATABASE ARCHIVELOG, 143
ALTER DATABASE BACKUP

CONTROLFILE, 142
ALTER DATABASE command, 69
ALTER DATABASE MOUNT, 142
ALTER DATABASE OPEN, 142
ALTER DATABASE RECOVER, 143
ALTER SESSION SQL statement, 119
Amdahl’s Law, 294
analysis

analytic and statistical functions, 21
disconnected, 242
multidimensional, 237
queries, 237
tools, 237

ANALYZE command, 112
ANO (Advanced Networking Option), 28,

148
AnyData, 88
AnyDataSet, 88
AnyType, 88

366 | Index

ApEx (Application Express), 331
Application Development Framework

(ADF), 336
Application Express (ApEx), 331
Application Management Packs, 126
Application Server, 1, 333

capabilities, 341
management, 341

Application Server Business Intelligence, 15
application server editions, 333
applications, assigning privileges, 146
AQ (Advanced Queuing)

basics, 19, 313
publish-subscribe functionality, 220
Streams, 218
system interfaces, 219

ARCH (Archiver), 53
ARCHIVELOG mode, 47

benefits, 276
parameters, 47
recovery from failure and, 133

Archiver (ARCH), 53
archives

automatic parameter settings, 47
isolation from, 162
redo log files, 46
writing to locations, 48

ASM (Automatic Storage Management), 54,
125

ASO (Advanced Security Option), 28, 145
asynchronous replication, 286, 287, 311
Atomic, 202
Atomic, Consistent, Isolated, Durable

(ACID) properties, 202
attributes, 103, 320
audio and video clips, storage in

database, 324
Audit Vault Server, 28
auditing on by default

automated patching, 138
basics, 139
compliance, 151
data gathering, 150
fine-grained, 150
sessions, 150
track actions, 150

authentication, 65
AUTHID CURRENT_USER keyword, 147
Automated Storage Management (ASM), 27
Automatic Database Diagnostic Monitor

(ADDM), 124, 156

Automatic Diagnostic Repository
(ADR), 125

Automatic Memory Management
(AMM), 49

Automatic Shared Memory Management
(ASMM), 49

Automatic Storage Management (ASM), 54,
125, 300

basics, 265
disk space additions, 61

Automatic Workload Repository
(AWR), 124, 156

availability, 254
databases, 25
measuring and planning, 254
Real Application Clusters (RAC), during

recovery by, 272
system vs. component availability, 256

Availability page, 130
AWR (Automatic Workload

Repository), 124, 156

B
B*-tree index, 92
background processes, instances, 52
Backup Solutions Program (BSP), 136
backups, 24, 135, 149, 172, 275

data warehouses, 237
databases, isolation from, 162
Oracle types, 275
overview, 135
planning, 275
preparations essential for recovery, 133
recovery, using in, 276
testing, 135, 275
third-party utilities, 135
types of, 134

BAM (Business Activity Monitoring), 16, 346
base tables, 91, 144
BEA Tuxedo TP monitor, 309
BFILE datatype, 87
bigfiles, 35
Binary Large Object (BLOB), 320
binary XML, 235
BINARY_DOUBLE, 85
BINARY_FLOAT, 85
bind

phase, 214
variables, 214

bitmap indexes, 21, 94, 230
BLOB (Binary Large Object), 320
BLOB datatype, 87

Index | 367

block-range parallelism, 170
affected operations, 172
affected query processes, 173
I/O, impact on, 170
inserts, 175
partitioned tables, 171
scaling, 170

blocks, size of, 40
bound plans, 212
BPEL (Business Process Engineering

Language), 345
BPEL Process Manager Option, 16
branch nodes, B*-tree index, 92
BSP (Backup Solutions Program)

products, 136
buffer caches

defined, 50
performance and, 177

BUILD_DB.SQL script, 63
Business Activity Monitoring (BAM), 16, 346
Business Intelligence

applications, 1, 247
BI Publisher, 16, 242
BI Server Administrator, 242
BI servers, 242
dangerous assumptions, 250, 252
interfaces, 339
reports services, 339
tools, 22

business intelligence beans, 245
Business Process Engineering Language

(BPEL), 345
business rules, 346
business solutions (see Business Intelligence)

C
C programming language

Oracle Lite, 32
SQL applications, 11

C++ programming language
Oracle Lite, 32
SQL applications, 11

cache, 15, 16, 176, 341
Cache Fusion, 216, 296
cached results, 51
cardinality, 230
cartridges, 12, 330
cascade deletes, 106
central processing units (see CPUs)
CHAR datatype, 83
character datatypes, 83
check constraints, 106

Checkpoint (CKPT), 53
checkpoints, 259

I/O activity and, 260
size value, impact on recovery time,

performance, 260
structure, 41

CHOOSE mode, 115
chunk size, 168
CKPT (Checkpoint), 53
class, 320
clean data, 238
client processes

accessing with databases, 70
dedicated server, 73
defined, 71
server processes, 70

CLOB datatype, 84, 87
CLOSER TO, 330
clustered systems

defined, 99
IOTs and, 93
locking model requirements, 296

CMAN (Connection Manager), 14
COBOL programming language, 11
Codd, Edward F., 2
cold backup, 275
Cold Failover Cluster, 344
collection types, 320
columns

datatype attributes, 82
design, 102
relational databases, 90

commit, 78
COMMIT statement, 187
Common Warehouse Metadata Interchange

(CWMI), 248
COMPATIBLE, 38
complete database recovery, 276
complete site failure

data redundancy solutions, 285
preparation for, 281, 289

compliance, 151
components, 48, 262
composite partitioning, 96
composition, 40
compound triggers, 108
concatenation operator, 88

blank-padded comparisons, 89
nonpadded comparisons, 89

concentrators, 14
concurrency

basics, 187
features, 192

368 | Index

concurrency (continued)
multiversion read consistency, 190
performance and, 197
transaction isolation and, 190
user access, 190
(see also serialization)

configuration files
handcoded, problems with, 66
Oracle Net, 67

conflict-resolution routines, 311
Connection Manager (CMAN), 14, 213
connections, 185

Connection Manager (CMAN), 14
features, 13
networking, 13
pooling, 208, 212

constraining tables runtime errors, 108
constraints

data normalization, 104
vs. triggers, 107

consumer groups, 184
content

management, 327
publish and subscribe solutions, 19

Content Database Suite, 327
Content Management Kit, 336
contention, 189
control files, 36

backup, 39
checkpoint records, 259
multiple files, 39
performance, impact on, 39
writing to multiple, 39

CONTROL_FILES, 37, 69
cost-based optimization, 110

comparing changes to, 117
hints, 114
improvements, 115
influence decisions of, 114
specify modes, 115
star schemas, queries against, 230
statistics, use of, 112

saving, 113
updating, 112

stored outline, 117
CPUs (central processing units)

database workload, 183
nondatabase workload and Oracle

performance, 184
resources, 182, 184
tuning, 182

crash recovery, 133, 258
hardware failover, 266
transactions and, 70

crawler, 327
CREATE, 141
CREATE DATABASE, 143
CREATE SPFILE, 143
CREATE TABLE...AS SELECT online

operation, 132
CRUD matrix, 60
cursors, 180
Customer Support Identification (CSI), 138
CWMI (Common Warehouse Metadata

Interchange), 248

D
data

abstraction, 319
cleansed, 237
cubes, 245
divergence, 286
extraction tools, 239
integrity, ensuring, 104
loading, 223

marts and warehouses, 237
marts, 225
mining, 22, 233, 237, 246
modeling, OLTP vs. decision

support, 204
read-only, 223
reporting tools, 241
sources, required capabilities, 237
strategic and tactical analyses, 223
tolerance, 286
transfer between databases, 18

Data Definition Language (DDL), 5
data dictionary, 54

access control, 150
AUD$ table, 150
MTS data, views for, 76
performance evaluation, 156
views, 120

Data Encryption Standard (DES), 28
Data Guard, 26
Data Manipulation Language (DML), 77,

175, 202
Data Mining Option, 247
Data Movement page, 131
Data Pump, 288
Data Recovery Advisor, 125

Index | 369

data redundancy
export of data, 288
flat files, export to, 288

data structures
additional, 98
basic, 90
clusters, 99
hash

clusters, 100
functions, 100

partitioning, 96
schemas, 98
sequences, 98
server entities, 108
statistics, 112
synonyms, 98

Data Warehouse Toolkit, 229
database administration

extents, 132
fragmentation, 132
media failure, recovery, 133
problems, reporting, 138
security, 138, 139
segments, 132
user accounts, management, 140

Database Change Management Pack, 127
Database Change Notification, 316
Database Configuration Assistant, 57
Database Configuration Management

Pack, 127
Database Diagnostics Pack, 127
Database Management Packs, 126
Database Provisioning Pack, 127
Database Replay, 118
Database Resource Manager (DRM), 184,

214
Database Tuning Pack, 127
Database Writer (see DBWR)
databases

3GLs and, 10
auto-discovery features, 67
basic architecture, 33, 104, 227
block size, 160
concurrency, 186
connectivity types, 307
creation of, 59, 62
development, 5
evolution, 224
extensibility, 12
features, 9, 13, 32
GIS and, 13
management, 236

multitier computing, 71
multiversion read consistency and

performance, 197
ODBC and, 11
performance, 154
programming tools, 9
relational, 4
reporting tools, 237
required capabilities, 242
resources and, 158
security, 139

datafile headers
checkpoints, 41, 259
structure of, 41

datafiles, 34
defined, 40
extent, 41
segment, 41
structure, 41

datatypes
AnyData, 88
AnyDataSet, 88
AnyType, 88
BFILE, 87
character, 83
CLOB, 84
conversions, 88
data integrity loss, 90
DATE, 85
DECIMAL, 85
defined, 82
DOUBLE PRECISION, 85
extended, basics, 318
FLOAT, 85
INT, 85
INTEGER, 85
large object (LOB), 87
LOB, 87
LONG, 84
LONG RAW, 86
NCHAR, 83
NCLOB, 84
NUMBER, 84
numeric, 84
NVARCHAR2, 83
ORA_ROWSCN, 87
Oracle9i, user-defined, 88
pseudocolumns, 86
RAW, 86
REAL, 85
ROWID, 86
scales, 85

370 | Index

datatypes (continued)
SMALLINT, 85
storage of multiple, 235
user-defined

objects and collections, 319
Oracle8, 87

VARCHAR2, 83
XMLType, 87

DATE datatype, 85
DB_BLOCK_BUFFERS, 156
DB_BLOCK_SIZE, 37
DB_DOMAIN, 37
DB_FILE_ MULTIBLOCK_READ_

COUNT, 168
DB_NAME, 37
DB_RECOVERY_FILE_DEST, 37
DB_RECOVERY_FILE_DEST_SIZE, 37
DBA_ views, 120
DBAs (database administrators), 122
DBMS (database management system), 3
DBMS_RLS package, 145
DBMS_STATS package, 112
DBWR (Database Writer), 52
DCE (Distributed Computing

Environment), 28
DCM (Distributed Configuration

Management), 344
DDL (Data Definition Language), 5
DDL_LOCK_TIMEOUT, 38
DECIMAL, 85
decision support systems (DSS), 224, 230,

233
decision trees, 246
dedicated

model, 73
processes, 73
storage subsystems

basics, 165
power outages, vulnerability to, 165

DEFAULT buffer pool, 50
deferred constraints, 106
deferred rollback, 261
DELETE, 141
depth of indexes, 92
dequeue, 313
DES (Data Encryption Standard), 28
development

servers, 336
tools, 28, 335

DHTML (thin client), 242

DICOM (Digital Imaging and
Communications in Medicine
version 3), 326

Digital Imaging and Communications in
Medicine (DICOM) version 3, 326

dimension tables, 21, 229
dimensions, 229
direct path export, 288
direct path load, 240
directory structure, planning, 58
dirty reads, 189
disaster recovery, 275

database and data redundancy, 282
planning, 253
preparation, 253

Discoverer, 339
Administration Edition, 244
End User Layer (EUL), 244
Plus, 244
portlet provider, 244
viewer, 244

disk failure, recovery from, 262
disk farms, 165
disk layout, planning, 160
disk space requirements, estimating, 60
disk striping

host-based, 164
nonredundant, 163
multiple spindles, 161

disk technology, 300
disks, deployment strategy, 301
dismount, databases, 69
Dispatcher process, 53
dispatchers, 74
Distributed Computing Environment

(DCE), 28
Distributed Configuration Management

(DCM), 344
distributed databases

basics, 5
configurations, 17
data integrity, ensuring, 308
data transfer, 310
features, 9, 17
history, 6
multiple access of, 305
queries and transactions, 18
security, 147
synchronization, 311

Distributed Lock Manager (DLM), 193
distributed queries, 17
distributed transactions, 17

Index | 371

DLM (Distributed Lock Manager), 193
DML (Data Manipulation Language), 77,

175, 202
documentation, 1, 356

books, 357
Oracle Corporation from, 357
Oracle, installation of, 57

domain indexes, 330
DOUBLE PRECISION, 85
downtime, unplanned causes, 256
DRM (Database Resource Manager), 184,

214
DROP, 141
DROP DATABASE, 143
DSS (decision support systems), 224, 230,

233
Dynamic Service Provisioning, 299

E
easy connect naming method, 65
E-Business Suite support, 327
EJBs (Enterprise JavaBeans), 323
EM (Oracle Enterprise Manager)

backups, 134
cache hit ratio and, 177
components, 127
consoles, 126, 129
data warehouses, managing, 236
features, 23
Intelligent Agents, 128
manageability features, 124
packs, 126
performance evaluation, using for, 156
queue management, 314
replication management, 313
tools, 129

EM2Go, 131
embedded applications, 31
EMC dedicated storage subsystems, 165
encryption, 149

Advanced Security Option (ASO), 148
tablespaces, 149
Transparent Data Encryption, 148

End User Layer (EUL), 244
enqueue, 313
enterprise data warehouses, 227
Enterprise Edition, 333
Enterprise JavaBeans (EJBs), 323
Enterprise Manager Console, 128
Enterprise Manager Grid Control, 300
Enterprise Service Bus (ESB), 347
entities, 103

entity Java beans, 323
Entrust Profiles, 148
equipartitioning, 97
ESB (Enterprise Service Bus), 347
Essbase, 245
ETL (extraction, transformation, and

loading) tools, 238
EUL (End User Layer), 244
events, 101
exclusive locks, 188
EXECUTE privilege, 142
execution path, 109
EXPLAIN PLAN utility, 120
Express Server, 245
expression, 101
extensibility framework, 330
eXtensible Markup Language (see XML)
extents, 41, 132
extraction, transformation, and loading

(ETL) tools, 238

F
fact tables, 21, 229
factors, 152
Fail Safe, 26, 268
failover

basics, 26
hardware outage duration, 268
notification, 344
solutions, 266

failures, types of, 133
fast commits, 79
Fast Mirror Resynchronization, 266
FAST_START_IO_TARGET parameter, 260
fast-start rollback, 261
fat clients, 206
fault diagnosability infrastructure, 125
fault-tolerance

application servers, 209
component redundancy, 262

Feuerstein, Steven, 145
FGAC (fine-grained access control), 91, 145
fields, 4
file placement issues, 162
fine-grained access control (FGAC), 91, 145
fine-grained auditing, 150
FIRST_ROWS, 114
Flashback

basics, 79
capabilities, 79
compliance issues, 153
Data Archive, 281

372 | Index

Flashback (continued)
data archive feature, 279
Database, 281
DROP, 281
history tracking, 153
queries, 78
Query, 280
Restore Points, 281
rollback feature, 79
System Change Number (SCN), 280
Table, 281
time span, 79
Total Recall Option, 279
transaction, 80
transaction commands, 279, 281
Transaction Query, 280
Versions Query, 280

Flashback Data Archive, 153, 281
Flashback Database, 281
Flashback DROP, 281
Flashback Query, 79, 280
Flashback Restore Points, 281
Flashback Table, 281
Flashback Transaction Query, 280
Flashback Versions Query, 280
FLOAT, 85
FOR UPDATE clause, 189
foreign keys, 5, 103, 106
Forms Services, 336
fragmentation

basics, 132
resolutions, 132

ftp commands, 317
full backups, 134
full table scans, 109
function-based indexes, 95
funneling, application servers, 208
Fusion Middleware, 1, 16, 65, 332
Fusion Middleware Adapters, 17

G
Geographic Information Systems (GIS), 13
geo-mirroring, 285
GIS (Geographic Information Systems)

Oracle and, 13
global authentication, 147
Global Cache Service (LMS), 53
grain, 144

(see also access control)
GRANT command, 142
granularity, 40
granule, 49, 176

Gray, Jim, 202
grid computing

architecture, 206
basics, 2, 210
clusters and, 217
configuration, 26
database migrations, 317
deployment, 218
deployment models, 8
Enterprise Manager, 23
Enterprise Manager Grid Control, 300
functionality, 316
Grid Control, 23, 127, 157
history, 7
nongrid solutions, 304
OLTP (online transaction

processing), 211
Real Application Clusters, 206
self-managing features, 2
user interface, 210

Grid Control, 127, 157
growth, planning for databases, 61

H
hardware architecture, 290

choosing, 302, 303
clustered systems, 295
comparisons, 302
components, latency cost of, 291
disk technology, 300
failover, 269
NUMA (Non-Uniform Memory Access)

computers, 297
SMP systems, 293
uniprocessor systems, 292

hash clusters, 100
hash partitioning, 25
hash values, 100
HASHKEYS, 100
Health Monitor, 125
Heterogeneous Services, 18, 19
heterogeneous transactions, application

servers, 209
high availability, 217

basics, 254
cost, 254
RAID and, 263
Real Application Clusters (RAC), 270
TAF and, 274

high-speed data pump, 18
hints, optimizer, 114
history, Oracle, 1

Index | 373

hit ratio, 177
home page, 130
hostnaming, 65
host-based and I/O subsystem volume

management, combined, 165
hot backup, 275
hybrid schemas, 223
hybrid tools, 245
Hyperion Financial Performance

Management, 247

I
I/O (input/output operations)

defined, 160
destinations, 161
distribution of overhead, 162
initialization parameters, 160
interactions, 169
planning for performance impact, 160
size, 160

IBM
CICS, 309
Information Management System

(IMS), 3
MQSeries, 313
Query Management Facility, 3
Structured Query Language (SQL), 5

ILM (Information Lifecycle
Management), 24

image support, 326
Imaging and Process Management

(IP/M), 327
immediate constraints, 106
IMS (Information Management System), 3
incremental backups, 24, 134
index organized tables (IOTs), 93
indexes

cooperative, 330
defined, 91
index structures, 92, 96

B*-tree index, 92
bitmap, 21, 94, 230
depth, 92
function-based indexes, 95
reverse key indexes, 94

invisible, 92
keys and, 92
NULL values and, 92
options, 96
ROWIDs and, 92
SQL syntax for creating, 92

information caching, 176

Information Lifecycle Management
(ILM), 24

Information Lifecycle Management
Assistant, 136

Information Management System (IMS), 3
Information Rights Management (IRM), 327
inheritance, 321
INIT.ORA (initialization file) (see

initialization file (INIT.ORA)
parameters)

initialization file (INIT.ORA) parameters
allocating memory, 176
archiving, 47, 48
backing up, 134, 276
checkpoints and recovery, 260, 261
control files, 39
PGA, 181
setting parallelism, 173

initialization parameters, 37
in-memory databases, 181
input/output operations (see I/O)
input/output subsystems, 165
INSERT, 141, 175
instance failure

defined, 133
Real Application Clusters (RAC),

management by, 271
instance recovery, 258

phases, 259
rollforward phase, 259

instances, 33
background processes, 52
defined, 48
initialization

CONTROL_FILES, 69
memory

background processes, 48
resources, 176

redo log files, failure, recovery from
and, 42

request queues, 74
SGA, 48, 50
shutting down, 69
starting, 69

Instant Portal, 337
INSTEAD OF triggers, 108
INT, 85
INTEGER, 85
integration, 339
integration components, 340
Integration Manager, 340
Integration Modeler, 340

374 | Index

Inter Process Communication (IPC), 71
interval partitioning, 25, 96
invoker’s rights, 142
IOTs (index organized tables)

limitations, 93
IPC (Inter Process Communication), 71
IRM (Information Rights Management), 327
isolation levels, 191

J
J2EE (OC4J) containers, 335
Java, 11, 322

triggers, 108
Java DataBase Connectivity (JDBC), 11, 322
Java Edition, 333
Java pool, 52
Java Virtual Machine (JVM), 10
JD Edwards product support, 327
JDBC (Java DataBase Connectivity), 11, 322
JDeveloper, 245, 347
Job Queue, 53
JVM (Java Virtual Machine), 10

K
KBIs (key business indicators), 346
KEEP buffer pool, 50
Kerberos, 28
key business indicators (KBIs), 346
keys, 5, 103

indexes and, 92
Kimball, Ralph, 229

L
Label Security Option, 28, 144, 145
LAG/LEAD functions, 233
large objects (LOB), 7, 10
large pool, 51, 76
latency cost, 291
LDAP (Lightweight Directory Access

Protocol), 65, 338
LDAP.ORA file, 68
leaf nodes, B*-tree index, 92
least recently used (LRU) algorithm, 50
LGWR (Log Writer), 53, 194
Lifecycle Events Calendar, 136
Lifecycle Management, 136
Lightweight Directory Access Protocol

(LDAP), 65, 338
linear regression functions, 234
links, to databases, 5

Linux, 23
LISTENER.ORA file, 67
list-hash partitioning, 236
list-list partitioning, 236
list-range partitioning, 236
load-balancing, 208, 342
loading process, 238
LOB (Large Objects), 87
local name resolution, 64
location transparency, 64
locks, 188

datablocks, in, 193
escalation, 193

Log Writer (LGWR), 53, 194
LOG_ARCHIVE_DEST, 37, 47
LOG_ARCHIVE_DEST_STATE, 37
LOG_ARCHIVE_DUPLEX_DEST, 48
LOG_ARCHIVE_FORMAT, 47
LOG_ARCHIVE_MIN_SUCCEED_

DEST, 48
LOG_ARCHIVE_START, 47
logical standby database capability, 283
logicality of instances, 33
LogMiner and LogMiner Manager, 277
LONG datatype, 84
LONG RAW, 86
LONGRAW datatype, 86
lookup tables, 229
lost updates, 189
LRU (least recently used) algorithm, 50

M
Management Connectors, 126
managment, self-tuning, 23
MapViewer, 336
materialized views, 21, 91, 232
media failure, 133
medical imaging standard support, 326
Memory Advisors, 124, 157
memory management, automated, 49, 124
memory resources

information access, 176
SGA, 176, 179

MEMORY_TARGET, 38, 49
merge, 200
messaging, 218

message-oriented middleware (MOM)
queuing, advanced, 313

propagation, 219
queuing and streams, 19
warehousing, 219

Index | 375

messaging server, 315
metadata

dictionary, 54
management, 237
standardization initiatives, 248

MetaLink, 138
methods, 320
Microsoft Cluster Services, 26
Microsoft Transaction Server

distributed transactions through Oracle
databases, 18

Oracle Manager for, 309
Middleware (Oracle Application Server)

Management Packs, 126
mirroring, 163

RAID and, 263
resynchronization, 266

mirror-pair, 39
(see also striped disk arrays)

modules, 334
MOLAP (Multidimensional Online

Analytical Processing) engines, 245
MOM (message-oriented middleware), 313
MOUNT state, 69
mounting, databases, 69
MTS (Multi-Threaded Server)

basics, 73, 212
data dictionary information, 76
session data and, 76

MTS_MAX_SERVERS, 74
MTTR Advisor, 125
multiblock I/Os, 160
Multidimensional Online Analytical

Processing (MOLAP) engines, 245
multidimensional query, 229
Multimedia enhancements, 325
Multi-Threaded Server (see MTS)
multiversion read consistency (MVRC), 211
mutating tables runtime errors, 108
MVRC multiversion read consistency, 190,

211

N
naming services

host, 65
Oracle Names, 64
third-party, 65

Nanda, Arup, 145
NAS (network attached storage), 136
National Language Support (NLS), 12, 83
NCHAR datatype, 83
NCLOB datatype, 84, 87

NDMP (Network Data Management
Protocol), 136

Net Configuration Assistant, 57
Net8

Assistant, 66
configuration, 63

network
configuration, 63
network attached storage (NAS), 136
problems, debugging, 66
protocols, dispatchers, 74

Network Data Management Protocol
(NDMP), 136

NLS (National Language Support), 12, 83
NLS_LANGUAGE, 38
NLS_TERRITORY, 38
NOARCHIVELOG mode

cold backups and, 276
defined, 46

node failure
management and recovery, 271
Real Application Clusters (RAC),

management by, 271
NOLOGGING keyword, 42
nonescalating row locks, 193, 211
nonrepeatable reads, 189
Non-Uniform Memory Access (see NUMA)
normalized forms

benefits, 103, 105
databases, 102
defined, 102

NOT NULL, 104
NULLs, 89

TRUE or FALSE states, 89
values, 90

NUMA (Non-Uniform Memory Access)
advantages, 298
synchronized data, 297

NUMBER datatype, 84
NVARCHAR2 datatype, 83

O
OBIEE (Oracle Business Intelligence

Enterprise Edition Suite), 22
object identifiers (OIDs), 320
object technologies, Oracle systems, 221
object-oriented programming

Oracle8i, since, 11
objects

data abstraction, 319
datatypes, 319
development, 319

376 | Index

objects (continued)
instances and tables, 319
relational enhancements, 321, 329
relational features, 319
views, 320

OC4J (J2EE) containers, 335
OCI (Oracle Call Interface), 11
ODBC (Open DataBase Connectivity)

Oracle and, 11
ODS (operational data store), 226
OFA (Optimal Flexible Architecture), 58
office plug-ins, 242
OHS (Oracle HTTP Server), 334
OID (Oracle Internet Directory), 14, 64, 147,

338
OIDs (object identifiers), 320
OIM (Oracle Identity Management), 147
OLAP Option, 21
OLAP tools, 245
OLTP (online transaction processing)

batch processing, contrasted with, 203
characteristics, 202
concurrency and performance

support, 211
data warehouse systems, contrasted

with, 60
decision support, vs., 204
history of, 201
Oracle features for, 211, 218
Oracle products and, 205
system architectures, 206
systems, contrasted with data

warehouses, 223
two-tier client/server, 206

OMFs (Oracle Managed Files), 35
online datafile backups, 133
online redo log files, 46
online transaction processing (see OLTP)
open connectivity, 307
Open DataBase Connectivity (ODBC), 11
OPEN_CURSORS, 38
opening, databases, 69
operating system audit trail, 150
Operating System Management Packs, 126
operational data store (ODS), 226
operators, 330
OPS (Oracle Parallel Server), 26, 170, 215,

296
Optimal Flexible Architecture (OFA), 58
Optimal Flexible Architecture for a Growing

Oracle Database, 58
optimize phase, 214

OPTIMIZER_MODE, 114
ORA_ROWSCN, 87
ORA-01034: Oracle not available

message, 258
ORA-03113: End-of-file on communication

channel message, 258
Oracle

architecture, 33, 290
auditing, 139
binary XML, 235
capabilities, 331
client/server communication,

configuring, 63
compliance, 139
concurrency, multiuser, 186
content management suite, 12
data structures, 82
datatypes, extended, 318
distributed data and databases, 305
high availability, 253
history, 1, 7
I/O management, 50
installation, 56, 57, 59
installation and running, 56
Java support, 322
locking model and, 228
management, 122
multiple versions on one server, 58
object technologies, supported, 221
OLTP, basics, 201
parallelism, support for, 170
performance, 154
security, 139
single source code model, 8
supported operating systems, 6
transaction processing, 201
warehousing, 222

Oracle Application Server
components, 334
installation, 334
security, 338
Web Cache, 341

Oracle Application Server Containers, 335
Oracle Application Server Portal, 15, 337
Oracle Application Server Web Cache, 15
Oracle Audit Vault Server, 153
Oracle Berkeley DB, 31
Oracle Business Intelligence Enterprise

Edition Suite (OBI EE), 22
Oracle Call Interface (OCI), 11
Oracle Corporation, 5
Oracle data dictionary, 54

Index | 377

Oracle Data Guard, 282
Oracle Database 10g

advanced queuing, 19
Automated Storage Management

(ASM), 27
automatically and dynamically size pools

in SGA, 162
configuration, 15
Data Guard

basics, 26
management, 284

grid computing, 2
deployment models, 8
history, 7

high-speed data pump, 18
large objects, space limitation, 10
management, self-tuning, 23
OMFs (Oracle Managed Files), 35
Real Application Clusters (RAC), 26
redo logs, device assignment, 162
secure backup, 25, 149
self-managing features, 2
Streams, 19
transportable tablespaces, 18
web services, 323
workspace enhancements, 200

Oracle Database 10g Release 2
Advanced Security Option (ASO), 148
backups, third-party utilities, 135
data, extended logic, 100
encryption, 149
heterogeneous services, 19
instances, clustered and nonclustered

applications, 343
integration, 340
management beans, 341
multitier security, 148
partition pruning, 97
performance, improved, 235
portal, 337
queuing, nonpersistent message, 314
Real Application Clusters (RAC)

Cache Fusion support, 217
reorganize partitions online, 97
Streams, 316
tablespaces, 35
write operations, 194

Oracle Database 11g
Advanced Compression Options, 301
advisors, 124
Application Express (ApEx), 331

Application Server
application server editions, 333
basics, 333

ASM improvements, 300
auditing on by default, 139, 150
automated memory management of SGA

and PGA size, 124
Automatic Database Diagnostic Monitor

(ADDM), 157, 159
automatic storage management, 266
Automatic Workload Repository, 156
background processes, 52
backups

large files, 172
secure backup, 149

cached results, 51
configuration automation, 66
consoles, 129
creation, 63
Data Guard

management, 284
standby enhancements, 282

Data Mining Option, enhancements, 247
Database Change Notification, 316
database OLAP option query, rewrite and

improved manageability, 245
Database Replay, 118
Database Resource Manager (DRM), 184
development, 7
disks, deployment strategy, 301
encryption, tablespaces, 149
enhancements, high availability, 218
fast mirror resynchronization, 266
fault diagnosability infrastructure, 125
features

self-management, 124
self-tuning, 124

Flashback
compliance issues, 153
Data Archive, 153
transaction commands, 279, 281
transactions, 80

Fusion Middleware, 332
grid computing, 304, 317
individual row change notification, 316
inheritance support, 321
initialization parameters, 37
installation, 56
interval partitioning, 25
invisible indexes, 92, 96
manageability functionality, 130
medical imaging standard support, 326

378 | Index

Oracle Database 11g (continued)
memory management, automatic, 49, 76,

157, 176
MEMORY_TARGET, 49, 52
messaging server, 315
Multimedia enhancements, 322, 325
object-relational enhancements, 321, 329
OLTP enhancements, 218
Oracle Internet Directory (OID), 64, 68
Partition Advisor, 97, 120
partitioning

automatic range creation, 236
composite, 96
compound, 107
enhancements, 236
interval, 96
pruning, 97
triggers, 108

performance
basics, 160
improvement, 235

PGA (Program Global Area)
memory allocation
sort area, sizing, 181

PL/SQL expressions, sequencing, 98
PL/SQL Function Result Cache in shared

pool area, 51
problems, reporting, 138
production tests, 118
profiling, automatic, 157
prompt for default security settings, 139
query, results caching, 179
Real Application Testing Option, 27, 131
redo log archiving, 259, 285
resource manager, 185
service management, multitier, 300
Service-Oriented Architecture (SOA),

providers, 323
SGA, sort area, sizing, 181
SGA_TARGET, 49
SOA Suite, 345, 347
spatial enhancements, 322, 324, 328
SQL Advisor, 157, 183
SQL Advisor tool, 120
SQL Performance Impact Advisor, 124
SQL performance improvement, 183
SQL plan baselines, 117
standby database, 283
storage management, 158
storage management capabilities, 168
Streams

enhancement, 316
functionality in grid computing, 316

summary of new features, 349
tabs, 130
three-dimensional geometry objects, 329
Total Recall Option, 279, 281
transactions, 7

changes, store and track, 279
data reversion, 281
management, 158

transient failure recovery, 266
transparent data encryption, 28
Transparent Gateway

extended targets, 307
query performance, 316

Undo Advisor, 125
UNDO_MANAGEMENT, 38
upgrades, 59
virtual table columns, 91
web service support, 329
workload capture, 118
workspace, enhancements, 200

Oracle Database Configuration Assistant, 62
Oracle Database Vault Option, 28, 151
Oracle Designer, 30, 228
Oracle Discoverer, Administration

Edition, 30
Oracle Enterprise Edition, 7

Spatial option, 13
Oracle Enterprise Manager (see EM)
Oracle Enterprise Manager Grid

Control, 156
Oracle Essentials, xi, xvi
Oracle Export utility, 288
Oracle Express Edition, 8
Oracle Forms Developer, 29
Oracle HTTP Server (OHS), 334
Oracle Identity Management (OIM), 147
Oracle Information Appliance Initiative, 301
Oracle installer

basics, 56
OFA standards, embedding, 58
Oracle Universal Installer, 56

Oracle Intelligent Agent, 67
Oracle Internet Directory (OID), 14, 64, 68,

147, 338
Oracle Java Virtual Machine (JVM), 323
Oracle JDeveloper, 29
Oracle JVM (Java Virtual Machine), 323
Oracle Lite, 32
Oracle Managed Files (OMFs), 35
Oracle Management Agents, 127
Oracle Management Repository, 128
Oracle Management Service (OMS), 128
Oracle messaging, 19

Index | 379

Oracle Multimedia, 12, 235, 322, 324
Oracle Names, 64
Oracle Net, 63

client/server connections, 72
configuration, 63
configuration files, 67

creating, 66
syntax, 66

Connection Manager (CMAN), 212
connection pooling, 212
service names, resolving, 64

multiple options, using, 65
supported protocols, 64

Oracle Net Listener, 72
Oracle Net Manager, 66
Oracle Net services, 64
Oracle Optimized Warehouse Initiative, 301
Oracle Parallel Fail Safe, 272
Oracle Parallel Server (OPS), 170, 215, 296
Oracle Personal Edition, 8
Oracle PL/SQL for DBAs, 145
Oracle PL/SQL Programming, 145
Oracle products, 7
Oracle Reports Developer, 29
Oracle Secure Backup, 25
Oracle Sensor Edge Server, 345
Oracle Spatial Option

enhancements, 322, 328
Multimedia and, 324
object types, 329

Oracle SQL Developer, 29
Oracle Standard Edition, 7
Oracle Standard Edition One, 7
Oracle Streams, 19
Oracle Technology Network (OTN), 357
Oracle Text, supported formats, 325
Oracle Type Translator (OTT), 321
Oracle Universal Installer, 56
Oracle Wallets, 148
Oracle Wireless, 16
Oracle Worldwide Customer Support

Services, 137
ORACLE_HOME environment variables, 58
Oracle7, 110
Oracle8

ANALYZE command, 112
cost-based optimization, 111
datatypes, user-defined, 87
extensibility options, 12
large pool, 76
NOLOGGING keyword, 42
Partitioning option, 96

PITR, tablespace level, 280
TAF (Transparent Application

Failover), 272, 274
triggers, PL/SQL, 108

Oracle8i, 8
AQ enhancements, publish-and-subscribe

capabilities, 315
checkpoint frequency variance, 260
deferred rollback, enhancements, 261
DRM (Database Resource Manager), 214
function-based indexes, 95
Java, 10, 56
JServer, 323
materialized views, 91
Objects and Extensibility features, 319
OLTP enhancements, 206
redo log archiving, 284
TAF (Transparent Application Failover)

enhancements, 273
transportable tablespaces, 18
triggers, Java, 108

Oracle9i
AnyType datatype, 88
AQ

enhancements, 313
XML support, 19

CREATE TABLE...AS SELECT online
operation, 132

Data Guard
basics, 26
future enhancements, 283

database block sizes, 40
datatype

conversions, 87
user-defined, 88

DRM (Database Resource Manager), 215
Flashback Query, 79
granule, 49
inheritance support, 321
instance recovery enhancements, 260
IOT (index organized table)

enhancements, 93
Java and, 10
logical standby, 217
LogMiner, 277
memory allocation, dynamic resizing

of, 176
Microsoft Transaction Server

transactions, 309
Multimedia, 12, 235, 324
NCHAR, NVARCHAR2, specifying

datatype length, 84

380 | Index

Oracle9i (continued)
OLTP enhancements, 206
OMFs (Oracle Managed Files), 35
Oracle JVM, 323
Oracle Net, 64
Oracle Net Manager, 66
parameters, setting, 68
persistent beans, support, 323
RAC Guard, 27, 272
Real Application Clusters (RAC), 26, 193,

215
recovery process, enhancements, 276
resumable space allocation, 60
RMAN, 134
rollback segments, automatic

management, 78
SGA, changing the size of, 49
shared server, 212
Unicode 3.0 support, 12
workspaces, 198
XMLType datatype, 87

Oracle9iAS (Oracle9i Application Server), 71
Oracle9iAS Portal, 30, 31
OracleAS Wireless

mobile enablers, 338
modes, 337
request information, 337
send to wireless users, 337
wireless contact maintenance, 338

OracleDatabase 11g
query, optimization, 230

OTT (Oracle Type Translator), 321

P
pages, 337
parallel bitmap star joins, 21
parallel execution (PE) processes (see PE)
Parallel Fail Safe, 27, 272
parallelization, 20

block-range, 170
databases, large, 169
index scans, 175
operations available, 172
partition-based, 174
self-tuning adaptive, 174
subpartitions, 175
tables and, 175

parity, 263
parse

excessive, 183
phase, 214

partial restore and rollforward recovery, 276
Partition Advisor, 97
partitioning

compound, 107
of data structures, 96
options, 25
parallelism, 170, 175
Partitioning option, uses, 236
pruning, 97
tables and block-range parallelism, 171
triggers, 108

passwords
backup of files, 276
usernames, 140

PE (parallel execution) processes
block ranges, 170
management, 173

PeopleSoft support, 327
performance, 155

application design and, 159
evaluation, 156
machine resources and, 158
memory and, 176
monitoring, Unix and Windows NT, 159
potential bottlenecks, 158
problem resolution, 159
RAID, 163
servers and, 156
tuning basics, 154
user satisfaction vs. objective

measurements, 155
Performance page, 130
performance tuning

basics, 154
read operations, minimizing, 292

persistent beans, 323
PGA (Program Global Area), 76, 176

private SQL area, 180
sort area, 181
system resources, 179

phantom reads, 190
physical databases, 33
physical files, 36, 48
ping, 216
PITR (point-in-time recovery), 280
PKI (Public Key Infrastructure), 148
PL/SQL

stored procedures, 10
triggers, 108

PL/SQL expressions, 98
PL/SQL Function Result Cache in shared

pool area, 51

Index | 381

PLAN_TABLE, 118
PMON (Process Monitor), 53
point-in-time recovery (PITR), 280
policy, 143
polymorphism, 321
pools, sizing, 162
portals

pages, 337
portlets, 337

Pribyl, Bill, 145
primary keys, 5

business relationships, identify, 103
constraints, 105

private SQL areas, 180
private synonyms, 99
privileges, 140
Procedural Gateways, 308
procedures (see stored procedures)
Process Monitor (PMON), 53
PROCESSES, 38
processes and threads, 54
production tests, 118
Program Global Area (see PGA)
programming tools, 9
projects

causes of failure, 249
effective strategy, 251
requirements for success, 249

prompt for default security settings, 139
propagation, 219
pseudocolumns, 86
Public Key Infrastructure (PKI), 148
PUBLIC pseudorole, 141
public synonyms, 99
publish-and-subscribe functionality, Oracle8i

AQ, 220
publishers, 315
publishing solutions, 242

Q
QMN (Queue Monitor), 54
Query Management Facility, 3
query optimization, 109, 120

cost-based optimizer, 110
decision support queries, 230, 233
execution path, 109
optimizer tool, 5
ORDER BY conditions, 109
parallelizable operations, 173
rule-based optimizer, 109

Queue Monitor (QMN), 54

R
RAC (see Real Application Clusters)
RAC Guard, 27, 272
RAD (Rapid Application Development), 30
RAID (Redundant Array of Inexpensive

Disks)
basics, 163, 262
control files, need for backup, 39
interactions, 169
levels, 263

most relevant to performance, 163
selection, 263

RAID-S arrays, 166
range-range partitioning, 236
ranking functions, 233
Rapid Application Development (RAD), 30
RAW, 86
RAW datatype, 86
RDBMS (relational database management

systems)
Oracle products family, 7

READ COMMITTED isolation level, 191
read locks, 188
read operations, example, 196
read-only tablespaces, 279
REAL, 85
Real Application Clusters (RAC)

availability, 217, 270
basics, 26, 215, 269
Cache Fusion support, 216
hardware failover, compared to, 269
history, 296
node failure management, 271
parallelism, 170
physical distancing of clusters, 282
recovery phases, 271
Transparent Application Failover

(TAF), 272
Real Application Testing Option, 27, 131
realms, 152
Real-Time Decisions (RTD), 235
RECO (Recover), 53
records, 4
Recover (RECO), 53
recovery, 24

backups, using, 276
complete database recovery, 276
fault-tolerant disk arrays and, 162
instance failures, 133
operations, 134
overview, 135
PITR, 280

382 | Index

recovery (continued)
planning, 275
preparations, 133
targeted and rollforward, 276
testing, 135, 275

Recovery Manager (see RMAN)
RECYCLE buffer pool, 50
redo log buffer

defined, 51
size and performance, 178

redo logs
archives, 45, 48, 162, 284
checkpoint records, 259
cold backups and, 276
defined, 42
device assignment, 161
fast commits and, 79
filenames, 44
mirroring to remote site, 285
multiplexing, 43
naming conventions, 45
online, 46
sequence numbers, 44
suppression of logging, 42
threading, 43

Redundant Array of Inexpensive Disks (see
RAID)

REF datatype, 320
refresh, 200
relational database management systems (see

RDBMS)
relational databases, 2, 5
Relational Online Analytical Processing

(ROLAP), 245
Relational Software, Incorporated (RSI), 2
relationships, 103
REMOTE_LISTENER, 38
replication, 218, 311

bandwidth and, 286
overhead, 288

reporting functions, 233, 242, 244
Reports

basics, 244
Server, 336
Services, 339

request queues, 74
resource delivery, 299
resource manager, 185
resource utilization, 184
RESTRICTED SESSION, 143
resumable space allocation, 60, 61
RETENTION AREA, 135

Reuter, Andreas, 202
reverse key indexes, 94
REVOKE command, 142
RFID, 345
RMAN (Recovery Manager)

basics, 24, 278
incremental backups, 278
options, 134

ROLAP (Relational Online Analytical
Processing), 245

roles, 141
rollback, 78, 200, 261

ROLLBACK statements, 187
segments

basics, 78
Flashback Query and, 79
undo information, 192

rollforward, 259
rolling upgrade, 59, 300
round-trip engineering, 30
ROWID pseudocolumn, 86
rows, 90
RSI (Relational Software, Incorporated), 2
RTD (Real-Time Decisions), 235
RULE mode, 115
rule-based optimizer, 109
rules, 101
Rules Manager, 100
run queue, 182
runs, 181

S
SANs (storage area networks), 165
Schema page, 131
schemas, 4, 98
SCN (System Change Number), 78, 192, 280
scripts, database creation, 63
Secure Backup Express (XE), 135
Secure Enterprise Search, 13
Secure Keys, 327
security

administration, 139
advanced options, 28, 148
applications, 146
auditing, 138, 150
compliance, 151
data access restrictions, 144
database features, 27
distributed management, 147
identity management, 141, 338
multitiered implementations, 147
Oracle Application Server, 338

Index | 383

“out of the box” default prompt, 143
patching, automated, 138
privileges, 141
third-party authentication services, 148
user accounts, 147
view-based, 144

security “rolling patch,” 138
security policies, 145
Segment Advisor, 125, 158
segments, 41, 132
SELECT

basics, 234
model clause, 234
security privileges, 141

self-managing features, 2
sequences, 5, 98
SERIALIZABLE isolation level, 191
serialization, 190
server, 71
Server page, 130
server processes, 70

dedicated, 73
PGA and, 179

service management, 300
service names, 64

resolution, 64
(see also naming services)

Service Registry
advertisements, 16
basics, 348
publishing, 16

Service Requests (SRs), 137
Service-Oriented Architecture (SOA), 323
session beans, 323
session memory, 76
SESSIONS, 38
SET ROLE command, using in

applications, 146
SGA (System Global Area)

components, 50
defined, 176
memory

allocation, initialization
parameters, 176

components, 48
resources, 176, 179

pools, 51
session data, for storage of, 76

SGA_TARGET, 49
shadow processes, 70
shared locks, 188

shared pool
basics, 51
size and performance, 177

shared servers, 74, 212
connection process, 75
data dictionary information, 76
initialization parameters, 74
model, 74

shared SQL
basics, 211
bind variables, 214

SHARED_SERVERS, 38
SHUTDOWN, 142
shutting down, databases, 69
Sigma Dynamics, 235
SIMPLE_INTEGER, 85
single database block I/Os, 160
single source code model, 8
SIP Servlet Container, 17
sizing the sort area, 181
SMALLINT, 85
SMON (System Monitor), 53
SMP (Symmetric Multiprocessing)

systems, 293
CPU quantity and system bus, 294
defined, 169

snowflake schemas, 231
SOA (Service-Oriented Architecture), 323
SOA Suite for Middleware, 16, 345, 347
Software and Support page, 131
software, additional needs, 236
sort area, sizing, 181
spatial

information systems and Oracle, 13
Spatial Option, 235

SPFILE, 37
backup, 276
system parameter storage, 68

spindles, 166
SQL (Structured Query Language)

access to and from non-Oracle
databases, 306

bad, 182
basics, 5
defined, 10
DML, 77
plan baselines, 117
statements

parsing and optimizing, 80
table order and optimization, 110
tuning, 120

384 | Index

SQL Advisor
combined functionality, 183
defined, 120
performance, 124
tuning applications, 157

SQL EXPLAIN PLAN statement, 118
SQL Performance Impact Advisor, 124
SQL Repair Advisor, 125
SQL Test Case Builder, 138
SQL UPDATE, 194
SQL*Analyzer tool, 117
SQL*Loader, direct path load, 240
SQL*Net, configuration, 63
SQL*Plus, PL/SQL blocks and, 10
SQLJ, 322
SQLNET file, 68
SRs (Service Requests), 137
stack, 256
stack space, 180
Standalone Management Packs, 126
Standard Edition, 333
Standard Edition One, 333
standby databases, 217, 282

Data Guard, 25
potential data losses with site failure, 284

star queries, 21
star schemas, 229

access facts along “look-up” values, 223
cost-based query optimization, 230

starting up databases, 68
STARTUP, 68, 142
state, 76
storage area networks (SANs), 165
storage management, 158, 168
Storagetek dedicated storage

subsystems, 165
stored outlines, 117, 212
stored procedures

based systems (TP-Lite), 208
basics, 207
defined, 5
granting security privileges directly, 146
PL/SQL, 207
variables, datatype attribute, 82

Streams, 316
AQ (Advanced Queuing), 19, 218
bandwidth and, 286
cascading failures, 218
change data capture, 19
change data capture, enabling, 218

data
capture, 19
consumption, 19
staging, 19

data divergence, 288
data tolerance, 286
database administrators, 287
direct system dependencies,

avoiding, 218
distance between sites, 286
export options, 288
hub-and-spoke architecture, 219
integration problems, 219
intersystem communication, 218
messaging, 218
network and site stability, 287
new system connection, 220
performance requirements, 286
propagation, 219
redundant data, 287
replication, 218, 286

asynchronous, 287
log-based, 19
lost data, 287
synchronous, 287

spokes and, 220
system failures, 218
system interfaces, 219
transaction

overhead, 288
queue, 287

triggers, 287
warehousing, 219

streams pool, 52
Streams Tuning Advisor, 125
striped disk arrays, 165, 168

loss of disks, 39
Oracle I/O, interaction, 168

striping
defined, 167
with parity, 263

Structured Query Language (see SQL)
subscribers, 315
summary tables, 232
support services available through Oracle

Corporation, 137
Support Workbench, 138
surge protection, 342
Symmetric Multiprocessing (SMP) systems

(see SMP)

Index | 385

symmetric replication, 239
synchronized sites, 311
synchronous replication, 286, 287
synchronous writing, 44
synonyms, 5, 98
SYS and SYSTEM user accounts, 140
System Change Number (SCN), 78, 192, 280
system crashes, 257

error messages, 258
preparation for, 262

System Global Area (see SGA)
system memory, types, 291, 301, 303
System Monitor (SMON), 53
System Monitoring plug-ins, 126
system overhead, 162

T
tables

data dictionary, 54
defined, 90
design, 102
external tables, defined, 90
fragmentation resolution, 132
index scans, 175
index-organized tables (IOTs), 93
parent-child relationship, 106
performance, impact on

reorganization, 132
tablespaces, 34, 35

batch operations and, 60
big files, 35
locally managed, 35
segregation of I/O, 161

tabs, 130
TAF (Transparent Application Failover), 217

configurations, 274
failover-aware applications, for

developing, 273
high availability benefits, 272
implementation, 274
JDBC support of, 274
ODBC support of, 274

tape drives, 136
TARs (Technical Assistance Requests), 137
TDE (Transparent Data Encryption), 149
Technical Assistance Requests (TARs), 137
technical requirement solutions, 222
Text Management, 324
thin client (DHTML), 242
third normal form (3NF), 102
third-generation languages (3GLs), 10, 11
third-party naming services, 65

threads, 43
processes and, 54
redo log files, 43

three-dimensional geometry objects, 329
three-state logic, 89
three-tier systems, 208
TimesTen, 17
TKPROF utility, 119, 120
TNS_ADMIN environment variable and

Oracle Net, 67
TNSNAMES file, 64, 67
TopLink, 335
Total Recall Option, 279, 281
TP (transaction processing) monitors, 208,

309
services, 208

TP-Lite, 208
Transaction Processing, Concepts and

Techniques, 202
transaction processing (TP) monitors, 208,

309
transactions, 7

ACID properties, 202
basics, 202
commitment, 258
consistent, 202
defined, 77, 187
distributed, 17
durable, 202
isolation, 189, 191, 202
locks, and FOR UPDATE clause, 189
routing, three-tier systems, 209
step-by-step example, 80
steps for, 81

transient failure recovery, 266
Transparent Application Failover (see TAF)
Transparent Data Encryption (TDE), 149
Transparent Gateways, 18, 239, 306

defined, 307
transportable tablespaces, 18, 239, 317
trickle feed, 238
triggers

compound, 108
database-level event, 108
defined, 107, 108
events, 107
INSTEAD OF, 108
procedural languages for writing, 108
restrictions, 108
row and statement level activation, 107
schema-level event, 108
vs. constraints, 107

386 | Index

Triple DES, 28
two-phase commits, 308
two-tier client/server system, 207

U
UCM (Universal Content Management), 327
Ultra Search, 13, 327
Undo Advisor, 125, 158
UNDO_MANAGEMENT, 38
Unicode, 12
uniprocessor systems, 292
unique constraint, 104
UNIQUE constraint and IOTs, 93
Universal Content Management (UCM), 327
Universal Records Management (URM), 327
Unix

OFA and, 58
Oracle databases, startup, 68
Oracle installer, 56
Oracle Net configuration files, default

location, 67
ORACLE_HOME variables and, 59
SMP, 294

UPDATE, 141
upgrades, rolling, 289
user accounts, auditing, 138, 150
USER_ views, 120
usernames, 140

V
V$ views, 156
V$CIRCUIT view, 77
V$DISPATCHER view, 77
V$METRICNAME, 156
V$MTS view, 76
V$SESSION, 156
V$SESSION_EVENT, 156
V$SESSION_WAIT, 156
V$SHARED_SERVER view, 77
V$SYSTEM_EVENT, 156
VARCHAR datatype, 83
VARCHAR2 datatype, 83
Very Large Database (VLDB), 169
views, 4, 91

access control, using for, 144
data dictionary, 54
MTS data, 76
performance evaluation, used in, 156

virtual private database (VPD), 137, 145
virtual table columns, 91
Virtual Tape Library (VTL), 136

VLDB (Very Large Database) and
parallelism, 169

volume-management software, 164
VPD (virtual private database), 137
VTL (Virtual Tape Library), 136

W
warehouse servers, 227
Web Cache, 341
web services

basics, 299
capabilities, 323
support, 329

Web Services Manager, 347
web sites

developers, 356
documentation, 356
Oracle database administration, 357
Oracle resources, 357

WebCenter, 17, 31, 336
WebDB, 30
wildcards format parameters, 47
windowing functions, 233, 234
Windows

Oracle databases, startup, 68
Oracle installer, 56
Oracle Net configuration files, default

location, 67
ORACLE_HOME variables and, 59
SMP systems, 294

workload capture, 118
workspace enhancements, 200
workspaces, 198–200
write operations, 194

contention, example, 195
locks, 188, 194

X
XA-compliant resource managers, 309
XML (eXtensible Markup Language)

AQ and, 314
CWMI (Common Warehouse Metadata

Interchange), 248
datatype support, 13
iDAP (Internet Document Access

Protocol), 314
Oracle Wireless Edition and, 16
Oracle9i AQ support, 19

XML Development Kit, 336
XMLType datatype, 87

About the Authors
Rick Greenwald has been active in the world of computer software for more than
two decades, including stints with Data General, Cognos, Gupta Technologies, and
Oracle. He is currently a developer evangelist with Salesforce.com. He has published
15 books and countless articles on a variety of technical topics, and has spoken at
conferences and training sessions across six continents. Rick’s other books include
coauthoring Oracle in a Nutshell (O’Reilly) and Professional Oracle Programming
(WROX). Rick lives in Arizona with his wife and three daughters.

Robert Stackowiak has worked for more than 20 years in business intelligence and
IT-related roles that have included sales and sales consulting, business development,
management of software development, and systems engineering. As vice president of
Business Intelligence in Oracle’s Technology Business Unit, he is recognized world-
wide for his work in business intelligence and data warehousing. His papers
regarding business intelligence and computer and software technology have
appeared in publications such as President & CEO Magazine, Database Trends and
Applications, and The Data Warehousing Institute’s publications. He has also coau-
thored the books Oracle Application Server 10g Essentials (O’Reilly), Professional
Oracle Programming (WROX), and Oracle Data Warehousing and Business Intelli-
gence Solutions (Wiley).

Jonathan Stern used more than 13 years of IT experience in contributing to the orig-
inal edition of this book. His background included senior positions in consulting,
systems architecture, and technical sales. Especially useful in his early work on this
book was his in-depth experience with the Oracle database across all major open
systems’ hardware and operating systems, covering tuning, scaling, parallelism,
Oracle Parallel Server, high availability, data warehousing, and OLTP. He authored
numerous papers and presented at internal and external conferences on topics such
as scaling with Oracle’s dynamic parallelism and the role of reorganizing segments in
an Oracle database.

Colophon
The animals on the cover of Oracle Essentials: Oracle Database 11g are cicadas.
There are about 1,500 species of cicada. In general, cicadas are large insects with
long thin wings that are perched above an inch-long abdomen. Their heads are also
large and contain three eyes and a piercing and sucking mechanism with which to
extrude sap from trees. Cicadas are known for their characteristic shrill buzz, which
is actually the male’s mating song, one of the loudest known insect noises.

http://salesforce.com
http://salesforce.com
http://salesforce.com

Cicadas emerge from the ground in the spring or summer, molt, then shed their skin
in the form of a shell. They stay near trees and plants, where they live for four to six
weeks with the sole purpose of mating. The adult insects then die, and their young
hatch and burrow into the ground. They attach to tree roots and feed off the sap for
4 to 17 years, after which time they emerge and continue the mating cycle. Cicadas
have one of the longest life spans of any insect; the most common species is the peri-
odical cicada, which lives underground for 13 to 17 years.

The cover image is an original 19th-century engraving from Cuvier’s Animals. The
cover font is Adobe ITC Garamond. The text font is Linotype Birka; the heading font
is Adobe Myriad Condensed; and the code font is LucasFont’s TheSans Mono
Condensed.

	Oracle Essentials: Oracle Database 11g, Fourth Edition
	Table of Contents
	Preface
	Goals of This Book
	Audience for This Book
	About the Fourth Edition (Oracle Database 11g)
	Structure of This Book
	Conventions Used in This Book
	How to Contact Us
	Using Code Examples
	Safari® Books Online
	Acknowledgments

	Introducing Oracle
	The Evolution of the Relational Database
	Relational Basics
	How Oracle Grew

	The Oracle Database Family
	Summary of Oracle Database Features
	Database Application Development Features
	Database Programming
	SQL
	PL/SQL
	Java
	Oracle and web services
	Large objects
	Object-oriented programming
	Third-generation languages (3GLs)
	Database drivers
	The Oracle Call Interface
	National Language Support

	Database Extensibility
	Oracle Multimedia
	Oracle content management
	Oracle search capabilities
	Oracle Spatial Option
	XML DB

	Database Connection Features
	Database Networking
	Oracle Net
	Oracle Internet Directory
	Oracle Connection Manager

	Oracle Application Server

	Distributed Database Features
	Distributed Queries and Transactions
	Heterogeneous Services

	Data Movement Features
	Transportable Tablespaces
	Advanced Queuing and Oracle Streams
	Extraction, Transformation, and Loading

	Database Performance Features
	Database Parallelization
	Data Warehousing and Business Intelligence
	Bitmap indexes
	Star query optimization
	Materialized views
	Analytic functions
	OLAP Option
	Data Mining Option
	Business intelligence tools

	Database Management Features
	Oracle Enterprise Manager
	Information Lifecycle Management and ILM Assistant
	Backup and Recovery
	Recovery Manager
	Incremental backup and recovery
	Oracle Secure Backup

	Database Availability
	Partitioning option
	Data Guard
	Fail Safe
	Oracle Real Application Clusters
	Data Guard and RAC
	Automated Storage Management

	Real Application Testing Option

	Database Security Features
	Advanced Security Option
	Label Security Option
	Database Vault Option
	Audit Vault Server

	Oracle Development Tools
	Oracle JDeveloper
	Oracle SQL Developer
	Oracle Forms Developer
	Oracle Reports Developer
	Oracle Designer
	Oracle Discoverer Administration Edition
	Oracle Portal

	Embedded Databases
	Oracle TimesTen
	Oracle Berkeley DB
	Oracle Lite

	Oracle Architecture
	Databases and Instances
	Oracle Database Structure
	Tablespaces
	Files of a database

	Database Initialization

	Deploying Physical Components
	Control Files
	Datafiles
	Datafile structure
	Extents and segments

	Redo Log Files
	Multiplexing redo log files
	How Oracle uses the redo logs
	Naming conventions for redo logs
	Archived redo logs
	ARCHIVELOG mode and automatic archiving

	Instance Memory and Processes
	Memory Structures for an Instance
	Database buffer cache
	Shared pool
	Redo log buffer
	Other pools in the SGA
	Automatic PGA management

	Background Processes for an Instance

	The Data Dictionary

	Installing and Running Oracle
	Installing Oracle
	Optimal Flexible Architecture
	Supporting Multiple Oracle Versions on a Machine
	Upgrading an Oracle Database

	Creating a Database
	Planning the Database
	The Value of Estimating
	Tools for Creating Databases

	Configuring Oracle Net
	Resolving Oracle Net Service Names
	Oracle Net Manager
	Auto-Discovery and Agents
	Oracle Net Configuration Files

	Starting Up the Database
	Shutting Down the Database
	Accessing a Database
	Server Processes and Clients
	Server process
	Client process

	Application Servers and Web Servers As Clients
	Oracle Net and Establishing Network Connections
	The Shared Server/Multi-Threaded Server
	Session memory for shared server processes versus dedicated server processes
	Data dictionary information about the shared server

	Oracle at Work
	Oracle and Transactions
	Flashback
	A Transaction, Step by Step

	Oracle Data Structures
	Datatypes
	Character Datatypes
	Numeric Datatype
	Date Datatype
	Other Datatypes
	Type Conversion
	Concatenation and Comparisons
	NULLs

	Basic Data Structures
	Tables
	Views
	Indexes
	B*-tree indexes
	Reverse key indexes
	Bitmap indexes
	Function-based indexes
	Invisible indexes

	Partitioning

	Additional Data Structures
	Sequences
	Synonyms
	Clusters
	Hash Clusters

	Extended Logic for Data
	Rules Manager
	The Expression Filter

	Data Design
	Constraints
	Triggers
	Query Optimization
	Rule-Based Optimization
	Cost-Based Optimization
	How statistics are used
	Influencing the cost-based optimizer

	Specifying an Optimizer Mode
	Newer database releases and the cost-based optimizer

	Saving the Optimization
	Comparing Optimizations
	Performance and Optimization

	Understanding the Execution Plan
	SQL Advisors
	Data Dictionary Tables

	Managing Oracle
	Manageability Features
	Database Advisors
	Automatic Storage Management

	Oracle Enterprise Manager
	Enterprise Manager Architecture
	Oracle Enterprise Manager Consoles
	EM2Go

	Fragmentation and Reorganization
	Resolving Fragmentation

	Backup and Recovery
	Types of Backup and Recovery Options
	Oracle Secure Backup
	Information Lifecycle Management

	Working with Oracle Support
	Reporting Problems
	Automated Patching

	Oracle Security, Auditing, and Compliance
	Security
	Usernames, Privileges, Groups, and Roles
	Identity Management
	Security Privileges
	Special Roles: DBA, SYSDBA, and SYSOPER
	Policies
	Restricting Data Access
	View-based security
	Fine-grained access control

	Label Security Option
	Security and Application Roles and Privileges
	Distributed Database and Multitier Security
	Distributed security management
	Multitier security

	Advanced Security Option
	Encryption
	Secure Backup

	Auditing
	Compliance
	Oracle Database Vault Option
	Oracle Audit Vault Server
	Flashback Data Archive

	Oracle Performance
	Performance Tuning Basics
	Defining Performance and Performance Problems
	Oracle Server Performance
	AWR, ADDM, and Enterprise Manager
	Machine Resource Usage
	When All Else Fails
	A Final Note on Performance Basics

	Oracle and Disk I/O Resources
	I/O Planning Principles for an Oracle Database
	Using RAID Disk Array Technology
	Volume managers
	Dedicated storage subsystems
	Combined host-based and I/O subsystem volume management

	Flexibility, Manageability, and Disk Arrays
	How Oracle I/O and Striped Arrays Interact

	Oracle and Parallelism
	Block-Range Parallelism
	Parallelism for Tables and Partitions of Tables
	What Can Be Parallelized?
	Degree of parallelism
	Self-tuning adaptive parallelism

	Partition-Based Parallelism
	Parallelism for partitions and subpartitions of a table
	Fast full index scans for nonpartitioned tables
	Parallel insert for nonpartitioned and partitioned tables

	Oracle and Memory Resources
	How Oracle Uses the System Global Area
	Automatic sizing for the SGA
	The database buffer cache
	The shared pool
	The redo log buffer
	Query results caching

	How Oracle Uses the Program Global Area
	Memory for SQL statements
	Memory for sorting within the PGA

	TimesTen

	Oracle and CPU Resources
	Database Resource Manager

	Oracle Multiuser Concurrency
	Basics of Concurrent Access
	Transactions
	Locks
	Concurrency and Contention
	Integrity Problems
	Serialization

	Oracle and Concurrent User Access
	Oracle’s Isolation Levels
	Oracle Concurrency Features
	How Oracle Handles Locking
	A Simple Write Operation
	A Conflicting Write Operation
	A Read Operation

	Concurrent Access and Performance
	Workspaces
	Workspace Implementation
	Workspace Operations
	Workspace Enhancements

	Oracle and Transaction Processing
	OLTP Basics
	What Is a Transaction?
	What Does OLTP Mean?
	General characteristics
	Online versus batch

	OLTP Versus Business Intelligence

	Oracle’s OLTP Heritage
	Architectures for OLTP
	Traditional Two-Tier Client/Server
	Stored Procedures
	Three-Tier Systems
	Application Servers and Web Servers
	The Grid

	Oracle Features for OLTP
	General Concurrency and Performance
	Scalability
	Multi-Threaded Server/shared server
	Database Resource Manager

	Real Application Clusters

	High Availability
	Oracle Streams and Advanced Queuing
	Streams for System Interfaces
	Oracle and Publish-Subscribe Technology

	Object Technologies and Distributed Components

	Oracle Data Warehousing and Business Intelligence
	Business Intelligence Basics
	The Evolution of Business Intelligence
	A Topology for Business Intelligence
	Data Marts
	Operational Data Store and Enterprise Warehouse
	OLTP Systems and Business Intelligence

	Data Warehouse Design
	Query Optimization
	Bitmap Indexes and Parallelism
	Summary Tables
	Materialized Views

	Analytics, OLAP, and Data Mining in the Database
	Analytic and Statistical Functions
	MODEL Clause in SELECT
	OLAP and Data Mining Capabilities
	Database Extensibility and the Data Warehouse
	Multimedia
	Spatial Option
	XML

	Managing the Data Warehouse
	Other Software for the Data Warehouse
	Extraction, Transformation, and Loading
	Reporting and Ad Hoc Query Tools
	OLAP and OLAP Applications Building
	Data Mining
	Business Intelligence Applications

	The Metadata Challenge
	Best Practices
	Common Misconceptions
	Effective Strategy

	Oracle and High Availability
	What Is High Availability?
	Measuring and Planning Availability
	Causes of Unplanned Downtime
	System Availability Versus Component Availability

	System Failure
	What Is Instance Recovery?
	Phases of Instance Recovery
	Rollforward
	Fast-start fault recovery and bounded recovery time
	Rollback improvements

	Protecting Against System Failure
	Component Redundancy
	Disk redundancy

	Automatic Storage Management
	Simple Hardware Failover
	Outage duration for hardware failover
	Failover and operating system platform

	Real Application Clusters
	Real Application Clusters and hardware failover
	Node failure and Real Application Clusters
	Parallel Fail Safe/RACGuard

	Oracle Transparent Application Failover
	How TAF works
	TAF and various Oracle configurations

	Recovering from Failures
	Developing a Backup-and-Recovery Strategy
	Taking Oracle Backups
	Using Backups to Recover
	Recovery Manager
	Read-Only Tablespaces
	Point-in-Time Recovery
	Flashback

	Complete Site Failure
	Oracle Data Guard: Standby Database for Redundancy
	Logical standby database
	Oracle Data Guard management

	Possible Causes of Lost Data with a Physical Standby Database
	Copying archived redo logs to a standby site
	Unarchived redo information and the role of geo-mirroring

	Data Redundancy Solutions
	Data Replication—Synchronous and Asynchronous
	Old-Fashioned Data Redundancy

	Rolling Upgrades

	Oracle and Hardware Architecture
	System Basics
	Uniprocessor Systems
	Symmetric Multiprocessing Systems
	Clusters
	Non-Uniform Memory Access Systems
	Grid Computing
	Disk and Storage Technology
	Disk Deployment Strategies

	Which Platform Deployment Solution?
	Platform Comparison
	Approaches to Choosing Platforms

	Oracle Distributed Databases and Distributed Data
	Accessing Multiple Databases As a Single Entity
	Distributed Data Access Across Multiple Oracle Databases
	Access to and from Non-Oracle Databases
	Two-Phase Commits
	Transaction Processing Monitors

	Moving Data Between Distributed Systems
	Advanced Replication
	Managing Advanced Replication

	Advanced Queuing
	Queue creation and management
	Publish-and-subscribe capabilities

	Oracle Streams
	Streams and Grid Computing
	Transportable Tablespaces

	Oracle Extended Datatypes
	Object-Oriented Development
	Object-Relational Features
	Objects in Oracle
	Other extensibility features

	Java’s Role and Web Services
	Enterprise JavaBeans

	Extensibility Features and Options
	Oracle Multimedia and Oracle Text
	Oracle Content Management
	Oracle Ultra Search
	Oracle Spatial Option

	Using the Extensibility Framework in Oracle

	Beyond the Oracle Database
	Application Express
	Oracle Fusion Middleware
	Oracle Application Server Editions
	Oracle Application Server Installation
	Oracle Application Server Components
	HTTP Server
	Containers for J2EE (OC4J)
	TopLink
	Development tools
	Development servers
	Portal
	Wireless
	Security
	Business intelligence
	Integration

	Oracle Application Server System Services
	Management
	Caching
	Clustering and load balancing
	RFID handling in Oracle Sensor Edge Server

	Oracle SOA Suite
	Oracle BPEL Process Manager
	Business Activity Monitoring
	Business Rules
	Enterprise Service Bus
	Web Services Manager
	Oracle JDeveloper
	Adapters
	Oracle Service Registry

	What’s New in This Book for Oracle Database 11g
	Chap�ter�1: Introducing Oracle
	Chap�ter�2: Oracle Architecture
	Chap�ter�3: Installing and Running Oracle
	Chap�ter�4: Data Structures
	Chap�ter�5: Managing Oracle
	Chap�ter�6: Oracle Security, Auditing, and Compliance
	Chap�ter�7: Oracle Performance
	Chap�ter�8: Oracle Multiuser Concurrency
	Chap�ter�9: Oracle and Transaction Processing
	Chap�ter�10: Oracle Data Warehousing and Business Intelligence
	Chap�ter�11: Oracle and High Availability
	Chap�ter�12: Oracle and Hardware Architecture
	Chap�ter�13: Oracle Distributed Databases and Distributed Data
	Chap�ter�14: Oracle Extended Datatypes
	Chap�ter�15: Beyond the Oracle Database

	Additional Resources
	Web Sites
	Books and Oracle Documentation
	Chap�ter�1: Introducing Oracle
	Chap�ter�2: Oracle Architecture
	Chap�ter�3: Installing and Running Oracle
	Chap�ter�4: Data Structures
	Chap�ter�5: Managing Oracle
	Chap�ter�6: Oracle Security, Auditing, and Compliance
	Chap�ter�7: Oracle Performance
	Chap�ter�8: Oracle Multiuser Concurrency
	Chap�ter�9: Oracle and Transaction Processing
	Chap�ter�10: Oracle Data Warehousing and Business Intelligence
	Chap�ter�11: Oracle and High Availability
	Chap�ter�12: Oracle and Hardware Architecture
	Chap�ter�13: Oracle Distributed Databases and Distributed Data
	Chap�ter�14: Oracle Extended Datatypes
	Chap�ter�15: Beyond the Oracle Database

	Index

